Author: Kanbarkar, Nikita; Mishra, Sanjay
Title: Matrix metalloproteinase inhibitors identified from Camellia sinensis for COVID-19 prophylaxis: an in silico approach Cord-id: kg6d5kzg Document date: 2020_10_6
ID: kg6d5kzg
Snippet: To respond to the public panic, government and private research organizations of every country keep working on the COVID-19 pandemic, even though still there is a lack of more efficacious medicine for the choice of Coronavirus disease treatment. To counteract on this situation several approved drugs including anti-malarial (hydroxychloroquine and chloroquine), and few anti-viral (remdesvir) agents are choice of treatment for COVID-19. However, these agents suffer from certain limitation in their
Document: To respond to the public panic, government and private research organizations of every country keep working on the COVID-19 pandemic, even though still there is a lack of more efficacious medicine for the choice of Coronavirus disease treatment. To counteract on this situation several approved drugs including anti-malarial (hydroxychloroquine and chloroquine), and few anti-viral (remdesvir) agents are choice of treatment for COVID-19. However, these agents suffer from certain limitation in their uses and pointed that there is no specific treatment or vaccine available to counter this contagious disease. Hence, there is urgent requirement to find a specific cure for the disease. In this view, there are several ongoing clinical trials of both western and traditional medicines. In present study, phytochemicals from Camellia sinensis were retrieved from the database and identified based on their ability to inhibit matrix metalloproteinase (MMPs) against SARS-CoV-2 main protease. Camellia sinensis entails of a massive number of phytochemicals with a good source of polyphenols such as Catechin, Epicatechin, Epigallocatechin and (–)-Epigallocatechin gallate. Molecular docking was performed using the GLIDE docking module of Schrodinger Suite software. The analysis displayed docking score for the five polyphenols i.e. theaflavin (− 8.701), 1-O-caffeoylquinic acid (− 7.795), Genistein (− 7.168), Epigallocatechin 3-gallate (− 6.282) and Ethyl trans-caffeate (− 5.356). Interestingly, theaflavin and Epigallocatechin 3-gallate have not revealed any side effects. These polyphenolic compounds had a strong binding affinity with hydrogen bonds and a good drug-likeness score. Therefore, Camellia sinensis could be the beneficial option in the prophylaxis of the COVID-19 outbreak.
Search related documents:
Co phrase search for related documents- acid protease and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acid protease and acute respiratory sars cov syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7
- acid protease and lung cancer: 1
- action possible mechanism and acute respiratory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
- action possible mechanism and acute respiratory sars cov syndrome coronavirus: 1, 2, 3, 4, 5, 6, 7, 8
- action possible mechanism and lung cancer: 1
- action possible mechanism and lung disease: 1
- acute respiratory and lopinavir tipranavir: 1
- acute respiratory and lopinavir tipranavir ritonavir: 1
- acute respiratory and lung cancer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and lung cancer disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory sars cov syndrome coronavirus and lung cancer: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory sars cov syndrome coronavirus and lung cancer disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute respiratory sars cov syndrome coronavirus and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date