Selected article for: "high sensitivity and present study"

Author: Ramya, Athiyanam Venkatesan; Thomas, Riya; Balachandran, Manoj
Title: Mesoporous onion-like carbon nanostructures from natural oil for high-performance supercapacitor and electrochemical sensing applications: Insights into the post-synthesis sonochemical treatment on the electrochemical performance
  • Cord-id: gg0xw7k4
  • Document date: 2021_9_24
  • ID: gg0xw7k4
    Snippet: Although onion-like carbon nanostructures (OLCs) are attractive materials for energy storage, their commercialization is hampered by the absence of a simple, cost-effective, large-scale synthesis route and binder-free electrode processing. The present study employs a scalable and straightforward technique to fabricate sonochemically tailored OLCs-based high-performance supercapacitor electrode material. An enhanced supercapacitive performance was demonstrated by the OLCs when sonicated in DMF at
    Document: Although onion-like carbon nanostructures (OLCs) are attractive materials for energy storage, their commercialization is hampered by the absence of a simple, cost-effective, large-scale synthesis route and binder-free electrode processing. The present study employs a scalable and straightforward technique to fabricate sonochemically tailored OLCs-based high-performance supercapacitor electrode material. An enhanced supercapacitive performance was demonstrated by the OLCs when sonicated in DMF at 60 °C for 15 min, with a specific capacitance of 647 F/g, capacitance retention of 97% for 5000 cycles, and a charge transfer resistance of 3 Ω. Furthermore, the OLCs were employed in the electrochemical quantification of methylene blue, a potential COVID-19 drug. The sensor demonstrated excellent analytical characteristics, including a linear range of 100 pM to 1000 pM, an ultralow sensitivity of 64.23 pM, and a high selectivity. When used to identify and quantify methylene blue in its pharmaceutical formulation, the sensor demonstrated excellent reproducibility, high stability, and satisfactory recovery.

    Search related documents:
    Co phrase search for related documents
    • actual sample and addition method: 1