Selected article for: "lab escape and risk escape"

Author: Starr, Tyler N.; Greaney, Allison J.; Addetia, Amin; Hannon, William W.; Choudhary, Manish C.; Dingens, Adam S.; Li, Jonathan Z.; Bloom, Jesse D.
Title: Prospective mapping of viral mutations that escape antibodies used to treat COVID-19
  • Cord-id: rvecy4kd
  • Document date: 2020_12_1
  • ID: rvecy4kd
    Snippet: Antibodies are becoming a frontline therapy for SARS-CoV-2, but the risk of viral evolutionary escape remains unclear. Here we map how all mutations to SARS-CoV-2’s receptor-binding domain (RBD) affect binding by the antibodies in Regeneron’s REGN-COV2 cocktail and Eli Lilly’s LY-CoV016. These complete maps uncover a single amino-acid mutation that fully escapes the REGN-COV2 cocktail, which consists of two antibodies targeting distinct structural epitopes. The maps also identify viral mut
    Document: Antibodies are becoming a frontline therapy for SARS-CoV-2, but the risk of viral evolutionary escape remains unclear. Here we map how all mutations to SARS-CoV-2’s receptor-binding domain (RBD) affect binding by the antibodies in Regeneron’s REGN-COV2 cocktail and Eli Lilly’s LY-CoV016. These complete maps uncover a single amino-acid mutation that fully escapes the REGN-COV2 cocktail, which consists of two antibodies targeting distinct structural epitopes. The maps also identify viral mutations that are selected in a persistently infected patient treated with REGN-COV2, as well as in lab viral escape selections. Finally, the maps reveal that mutations escaping each individual antibody are already present in circulating SARS-CoV-2 strains. Overall, these complete escape maps enable immediate interpretation of the consequences of mutations observed during viral surveillance.

    Search related documents:
    Co phrase search for related documents
    • acute infection and low number: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • acute infection and luciferase gene: 1, 2
    • long infection and low number: 1, 2, 3, 4