Author: Goswami, Anindya; Rajani, Sharan; Tanksale, Atharva
Title: Data-Driven Option Pricing using Single and Multi-Asset Supervised Learning Cord-id: k3k0iqds Document date: 2020_8_2
ID: k3k0iqds
Snippet: We propose three different data driven approaches for pricing European style call options using supervised machine-learning algorithms. The proposed approaches are tested on two stock market indices, NIFTY50 and BANKNIFTY from the Indian equity market. Although neither historical nor implied volatility is used as an input, the results show that the trained models have been able to capture the option pricing mechanism better than or similar to the Black Scholes formula for all the experiments. Ou
Document: We propose three different data driven approaches for pricing European style call options using supervised machine-learning algorithms. The proposed approaches are tested on two stock market indices, NIFTY50 and BANKNIFTY from the Indian equity market. Although neither historical nor implied volatility is used as an input, the results show that the trained models have been able to capture the option pricing mechanism better than or similar to the Black Scholes formula for all the experiments. Our choice of scale free I/O allows us to train models using combined data of multiple different assets from a financial market. This not only allows the models to achieve far better generalization and predictive capability, but also solves the problem of paucity of data, the primary limitation of using machine learning techniques. We also illustrate the performance of the trained models in the period leading up to the 2020 Stock Market Crash, Jan 2019 to April 2020.
Search related documents:
Co phrase search for related documents- absolute error and accuracy metric: 1
- absolute error and activation function: 1, 2
- absolute error and actual distance: 1
- absolute error and actual predicted: 1, 2, 3, 4, 5, 6, 7
- absolute error and actual price: 1
- absolute error and additional feature: 1
- absolute error and additional information: 1
- absolute error and long short: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
- absolute error and loss function: 1, 2
- absolute error and machine learn: 1
- absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
- absolute error and machine learning field: 1, 2
- absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- absolute error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- absolute error and mae metric: 1
Co phrase search for related documents, hyperlinks ordered by date