Author: Serrao, S.; Deng, S.; Priyanka, P.; Mukhamadiarov, R. I.; Childs, L. M.; Tauber, U. C.
Title: Requirements for the containment of COVID-19 disease outbreaks through periodic testing, isolation, and quarantine Cord-id: m6ri26du Document date: 2020_10_25
ID: m6ri26du
Snippet: We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman--Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious
Document: We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman--Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections.
Search related documents:
Co phrase search for related documents- local community and long establish: 1
- local community and long range: 1
Co phrase search for related documents, hyperlinks ordered by date