Author: Seymour, Elif; Ünlü, Nese Lortlar; Carter, Eric P.; Connor, John H.; Ünlü, M. Selim
Title: Configurable Digital Virus Counter on Robust Universal DNA Chips Cord-id: mb0qcd0b Document date: 2020_10_22
ID: mb0qcd0b
Snippet: Here, we demonstrate real-time multiplexed virus detection by applying DNA-directed antibody immobilization technique to a single-particle interferometric reflectance imaging sensor (SP-IRIS). In this technique, the biosensor chip surface spotted with different DNA sequences is converted to a multiplexed antibody array by flowing antibody-DNA conjugates and allowing specific DNA-DNA hybridization. The resulting antibody array is shown to detect three different recombinant Vesicular Stomatitis Vi
Document: Here, we demonstrate real-time multiplexed virus detection by applying DNA-directed antibody immobilization technique to a single-particle interferometric reflectance imaging sensor (SP-IRIS). In this technique, the biosensor chip surface spotted with different DNA sequences is converted to a multiplexed antibody array by flowing antibody-DNA conjugates and allowing specific DNA-DNA hybridization. The resulting antibody array is shown to detect three different recombinant Vesicular Stomatitis Viruses (rVSVs) genetically engineered to express surface glycoproteins of Ebola, Marburg, and Lassa viruses in real-time in a disposable microfluidic cartridge. We also show that this method can be modified to produce a single-step, homogeneous assay format by mixing the antibody-DNA conjugates with the virus sample in solution phase prior to flowing in the microfluidic cartridge, eliminating the antibody immobilization step. This homogenous approach achieved detection of the model Ebola virus, rVSV-EBOV, at a concentration of 100 PFU/ml in 1 hour. Finally, we demonstrate the feasibility of this homogeneous technique as a rapid test using a passive microfluidic cartridge. A concentration of 104 PFU/ml was detectable under 10 minutes for the rVSV-Ebola virus. Utilizing DNA microarrays for antibody-based diagnostics is an alternative approach to antibody microarrays and offers advantages such as configurable sensor surface, long-term storage ability, and decreased antibody use. We believe these properties will make SP-IRIS a versatile and robust platform for point-of-care diagnostics applications.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date