Author: Agbehadji, Israel Edem; Awuzie, Bankole Osita; Ngowi, Alfred Beati; Millham, Richard C.
Title: Review of Big Data Analytics, Artificial Intelligence and Nature-Inspired Computing Models towards Accurate Detection of COVID-19 Pandemic Cases and Contact Tracing Cord-id: gsp0b5yx Document date: 2020_7_24
ID: gsp0b5yx
Snippet: The emergence of the 2019 novel coronavirus (COVID-19) which was declared a pandemic has spread to 210 countries worldwide. It has had a significant impact on health systems and economic, educational and social facets of contemporary society. As the rate of transmission increases, various collaborative approaches among stakeholders to develop innovative means of screening, detecting and diagnosing COVID-19’s cases among human beings at a commensurate rate have evolved. Further, the utility of
Document: The emergence of the 2019 novel coronavirus (COVID-19) which was declared a pandemic has spread to 210 countries worldwide. It has had a significant impact on health systems and economic, educational and social facets of contemporary society. As the rate of transmission increases, various collaborative approaches among stakeholders to develop innovative means of screening, detecting and diagnosing COVID-19’s cases among human beings at a commensurate rate have evolved. Further, the utility of computing models associated with the fourth industrial revolution technologies in achieving the desired feat has been highlighted. However, there is a gap in terms of the accuracy of detection and prediction of COVID-19 cases and tracing contacts of infected persons. This paper presents a review of computing models that can be adopted to enhance the performance of detecting and predicting the COVID-19 pandemic cases. We focus on big data, artificial intelligence (AI) and nature-inspired computing (NIC) models that can be adopted in the current pandemic. The review suggested that artificial intelligence models have been used for the case detection of COVID-19. Similarly, big data platforms have also been applied for tracing contacts. However, the nature-inspired computing (NIC) models that have demonstrated good performance in feature selection of medical issues are yet to be explored for case detection and tracing of contacts in the current COVID-19 pandemic. This study holds salient implications for practitioners and researchers alike as it elucidates the potentials of NIC in the accurate detection of pandemic cases and optimized contact tracing.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome and location history: 1, 2
- acute respiratory syndrome and location information: 1, 2, 3, 4, 5, 6, 7
- acute respiratory syndrome and location tracing: 1
- acute respiratory syndrome and long short: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute respiratory syndrome and long short term: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute respiratory syndrome and long short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute respiratory syndrome and lstm long short term memory: 1, 2, 3, 4, 5, 6, 7, 8
- acute respiratory syndrome and lstm perform: 1
- acute respiratory syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute respiratory syndrome and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute respiratory syndrome and machine learning performance: 1, 2, 3, 4, 5
- long short term memory and lstm long short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- long short term memory and lstm long short term memory include: 1, 2, 3
- long short term memory and lstm perform: 1, 2, 3, 4, 5
- long short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long short term memory and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9
- long short term memory and machine learning performance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- lstm long short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
- lstm long short term memory and machine learning model: 1, 2, 3, 4, 5
Co phrase search for related documents, hyperlinks ordered by date