Selected article for: "Try single phrases listed below for"

Author: Pister, Alexis; Buono, Paolo; Fekete, Jean-Daniel; Plaisant, Catherine; Valdivia, Paola
Title: Integrating Prior Knowledge in Mixed Initiative Social Network Clustering
  • Cord-id: ec55ifp7
  • Document date: 2020_5_6
  • ID: ec55ifp7
    Snippet: We propose a new approach -- called PK-clustering -- to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering approach and a visual analytics user interface that address this issue. It is based on a process tha
    Document: We propose a new approach -- called PK-clustering -- to help social scientists create meaningful clusters in social networks. Many clustering algorithms exist but most social scientists find them difficult to understand, and tools do not provide any guidance to choose algorithms, or to evaluate results taking into account the prior knowledge of the scientists. Our work introduces a new clustering approach and a visual analytics user interface that address this issue. It is based on a process that 1) captures the prior knowledge of the scientists as a set of incomplete clusters, 2) runs multiple clustering algorithms (similarly to clustering ensemble methods), 3) visualizes the results of all the algorithms ranked and summarized by how well each algorithm matches the prior knowledge, 4) evaluates the consensus between user-selected algorithms, and 5) allows users to review details and iteratively update the acquired knowledge. We describe our approach using an initial functional prototype, then provide two examples of use and early feedback from social scientists. We believe our clustering approach offers a novel constructive method to iteratively build knowledge while avoiding being overly influenced by the results of often randomly selected black-box clustering algorithms.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date