Author: Desai, Sanket; Vatsa Mishra, Saket; Joshi, Asim; Sarkar, Debashmita; Hole, Arti; Mishra, Rohit; Dutt, Shilpee; Chilakapati, Murali Krishna; Gupta, Sudeep; Dutt, Amit
Title: Raman Spectroscopy Based Detection of RNA viruses in Saliva: a preliminary report Cord-id: h4aiiy4x Document date: 2020_7_1
ID: h4aiiy4x
Snippet: Several nonâ€invasive Raman spectroscopyâ€based assays have been reported for rapid and sensitive detection of pathogens. We developed a novel statistical model for the detection of RNA viruses in saliva, based on an unbiased selection of a set of 65 Raman spectral features that mostly attribute to the RNA moieties, with a prediction accuracy of 91.6% (92.5 % sensitivity and 88.8 % specificity). Furthermore, to minimize variability and automate the downstream analysis of the Raman spectra, we
Document: Several nonâ€invasive Raman spectroscopyâ€based assays have been reported for rapid and sensitive detection of pathogens. We developed a novel statistical model for the detection of RNA viruses in saliva, based on an unbiased selection of a set of 65 Raman spectral features that mostly attribute to the RNA moieties, with a prediction accuracy of 91.6% (92.5 % sensitivity and 88.8 % specificity). Furthermore, to minimize variability and automate the downstream analysis of the Raman spectra, we developed a GUI based analytical tool ‘RNA Virus Detector (RVD)‘. This conceptual framework to detect RNA viruses in saliva could form the basis for field application of Raman Spectroscopy in managing viral outbreaks, such as the ongoing COVIDâ€19 pandemic. (http://www.actrec.gov.in/piâ€webpages/AmitDutt/RVD/RVD.html). This article is protected by copyright. All rights reserved.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date