Selected article for: "cellular receptor and disease outbreak"

Author: Zhang, Dayi; Zhang, Xiaoling; Ma, Rui; Deng, Songqiang; Wang, Xinzi; Wang, Xinquan; Zhang, Xian; Huang, Xia; Liu, Yi; Li, Guanghe; Qu, Jiuhui; Zhu, Yu; Li, Junyi
Title: Ultra-fast and onsite interrogation of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in waters via surface enhanced Raman scattering (SERS)
  • Cord-id: i8xu20qm
  • Document date: 2021_5_13
  • ID: i8xu20qm
    Snippet: The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia challenges the rapid interrogation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human and environmental samples. In this study, we developed an assay using surface enhanced Raman scattering (SERS) coupled with multivariate analysis to detect SARS-CoV-2 in an ultra-fast manner without any pretreatment (e.g., RNA extraction). Using silver-nanorod SERS array functionalized with cellular receptor angio
    Document: The outbreak of coronavirus infectious disease-2019 (COVID-19) pneumonia challenges the rapid interrogation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human and environmental samples. In this study, we developed an assay using surface enhanced Raman scattering (SERS) coupled with multivariate analysis to detect SARS-CoV-2 in an ultra-fast manner without any pretreatment (e.g., RNA extraction). Using silver-nanorod SERS array functionalized with cellular receptor angiotensin-converting enzyme 2 (ACE2), we obtained strong SERS signals of ACE2 at 1032, 1051, 1089, 1189, 1447 and 1527 cm(−1). The recognition and binding of receptor binding domain (RBD) of SARS-CoV-2 spike protein on SERS assay significantly quenched the spectral intensities of most peaks and exhibited a shift from 1189 to 1182 cm(−1). On-site tests on 23 water samples with a portable Raman spectrometer proved its accuracy and easy-operation for spot detection of SARS-CoV-2 to evaluate disinfection performance, explore viral survival in environmental media, assess viral decay in wastewater treatment plant and track SARS-CoV-2 in pipe network. Our findings raise a state-of-the-art spectroscopic tool to screen and interrogate viruses with RBD for human cell entry, proving its feasibility and potential as an ultra-fast detection tool for wastewater-based epidemiology.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1