Selected article for: "activity important and acute respiratory syndrome"

Author: Kuang, Wan-Fen; Chow, Lu-Ping; Wu, Mei-Hua; Hwang, Lih-Hwa
Title: Mutational and inhibitive analysis of SARS coronavirus 3C-like protease by fluorescence resonance energy transfer-based assays
  • Cord-id: ieucykbf
  • Document date: 2005_6_17
  • ID: ieucykbf
    Snippet: The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays key roles in viral replication and is an attractive target for anti-SARS drug discovery. In this report, a fluorescence resonance energy transfer (FRET)-based method was developed to assess the proteolytic activity of SARS-CoV 3CL(pro). Two internally quenched fluorogenic peptides, 1NC and 2NC, corresponding to the N-terminal and the C-terminal autocleavage sites of SARS-CoV 3CL(pro), respectively,
    Document: The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome coronavirus (SARS-CoV) plays key roles in viral replication and is an attractive target for anti-SARS drug discovery. In this report, a fluorescence resonance energy transfer (FRET)-based method was developed to assess the proteolytic activity of SARS-CoV 3CL(pro). Two internally quenched fluorogenic peptides, 1NC and 2NC, corresponding to the N-terminal and the C-terminal autocleavage sites of SARS-CoV 3CL(pro), respectively, were used as substrates. SARS-CoV 3CL(pro) seemed to work more efficiently on 1NC than on 2NC in trans-cleavage assay. Mutational analysis demonstrated that the His41 residue, the N-terminal 7 amino acids, and the domain III of SARS-CoV 3CL(pro) were important for the enzymatic activity. Antibodies recognizing domain III could significantly inhibit the enzymatic activity of SARS-CoV 3CL(pro). The effects of class-specific protease inhibitors on the trans-cleavage activity revealed that this enzyme worked more like a serine protease rather than the papain protease.

    Search related documents: