Selected article for: "model obtain and present study"

Author: Kumar, Amit; Kumar, Prateek; Saumya, Kumar Udit; Giri, Rajanish
Title: Investigating the conformational dynamics of SARS-CoV-2 NSP6 protein with emphasis on non-transmembrane 91-112 & 231-290 regions
  • Cord-id: 8z7qfq2n
  • Document date: 2021_7_7
  • ID: 8z7qfq2n
    Snippet: The NSP6 protein of SARS-CoV-2 is a transmembrane protein, with some regions lying outside the membrane. Besides, a brief role of NSP6 in autophagosome formation, this is not studied significantly. Also, there is no structural information available till date. Based on the prediction by TMHMM server for transmembrane prediction, it is found that the N-terminal residues (1-11), middle region residues (91-112) and C-terminal residues (231-290) lies outside the membrane. Molecular Dynamics (MD) simu
    Document: The NSP6 protein of SARS-CoV-2 is a transmembrane protein, with some regions lying outside the membrane. Besides, a brief role of NSP6 in autophagosome formation, this is not studied significantly. Also, there is no structural information available till date. Based on the prediction by TMHMM server for transmembrane prediction, it is found that the N-terminal residues (1-11), middle region residues (91-112) and C-terminal residues (231-290) lies outside the membrane. Molecular Dynamics (MD) simulations showed that NSP6 consisting of helical structures, whereas membrane outside lying region (91-112) showed partial helicity, which further used as model and obtain disordered type conformation after 1.5 microsecond. Whereas, the residues 231-290 has both helical and beta sheet conformations in its structure model. A 200ns simulations resulted in the loss of beta sheet structures, while helical regions remained intact. Further, we have characterized the residue 91-112 by using reductionist approaches. The NSP6 (91-112) was found disordered like in isolation, which gain helical conformation in different biological mimic environmental conditions. These studies can be helpful to study NSP6 (91-112) interactions with host proteins, where different protein conformation might play significant role. The present study adds up more information about NSP6 protein aspect, which could be exploited for its host protein interaction and pathogenesis. Graphical Abstract The schematic representation of NSP6 membrane topology and conformational dynamics of residue 91-112. The N-terminal and C-terminal are shown in cytoplasmic side based on the experimental evidence on coronaviruses reported by Oostra et al., 2008. The membrane anchoring domain are shown based on the TMHMM server prediction.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date