Selected article for: "apoptotic cell and cell viability"

Author: Mou, Qiao; Yang, Yu-Wei; Chen, Lu; Fang, Ting; Yao, Yu-Chang; Du, Zhi-Qiang; Yang, Cai-Xia
Title: Melatonin mitigates Chloroquine-induced defects in porcine immature Sertoli cells
  • Cord-id: aalysw3a
  • Document date: 2021_1_1
  • ID: aalysw3a
    Snippet: Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 µM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be part
    Document: Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 µM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be partially rescued by melatonin (MT) (10 nM). Transcriptome profiling identified 1611 differentially expressed genes (DEGs) (776 up- and 835 down-regulated) (20 µM CQ vs. DMSO), mainly involved in MAPK cascade, cell proliferation/apoptosis, HIF-1, PI3K-Akt and lysosome signaling pathways. In contrast, only 467 (224 up- and 243 down-regulated) DEGs (CQ + MT vs. DMSO) could be found after MT (10 nM) addition, enriched in cell cycle, regulation of apoptotic process, lysosome and reproduction pathways. Therefore, the partial rescue effects of MT on CQ treatment were confirmed by multiple assays (cell viability, ROS level, mitochondrial function, apoptosis, and mRNA levels of selected genes). Collectively, CQ treatment could impair porcine iSC viability by deranging the signaling pathways related to apoptosis and autophagy, which could be partially rescued by MT supplementation.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date