Author: Altable, Marcos; de la Serna, Juan Moisés
Title: Protection against COVID-19 in African population: Immunology, genetics, and malaria clues for therapeutic targets Cord-id: rehk1di9 Document date: 2021_2_22
ID: rehk1di9
Snippet: BACKGROUND: There is a marked discrepancy between SARS-CoV-2 seroprevalence and COVID-19 cases and deaths in Africa. MAIN: SARS-CoV-2 stimulates humoral and cellular immunity systems, as well as mitogen-activated protein kinase (MAPK) and nuclear NF-kB signalling pathways, which regulate inflammatory gene expression and immune cell differentiation. The result is pro-inflammatory cytokines release, hyperinflammatory condition, and cytokine storm, which provoke severe lung alterations that can lea
Document: BACKGROUND: There is a marked discrepancy between SARS-CoV-2 seroprevalence and COVID-19 cases and deaths in Africa. MAIN: SARS-CoV-2 stimulates humoral and cellular immunity systems, as well as mitogen-activated protein kinase (MAPK) and nuclear NF-kB signalling pathways, which regulate inflammatory gene expression and immune cell differentiation. The result is pro-inflammatory cytokines release, hyperinflammatory condition, and cytokine storm, which provoke severe lung alterations that can lead to multi-organ failure in COVID-19. Multiple genetic and immunologic factors may contribute to the severity of COVID-19 in African individuals when compared to the rest of the global population. In this article, the role of malaria, NF-kB and MAPK pathways, caspase-12 expression, high level of LAIR-1-containing antibodies, and differential glycophorins (GYPA/B) expression in COVID-19 are discussed. CONCLUSION: Understanding pathophysiological mechanisms can help identify target points for drugs and vaccines development against COVID-19. To our knowledge, this is the first study that explores this link and proposes a biological and molecular answer to the epidemiologic discrepancy in COVID-19 in Africa.
Search related documents:
Co phrase search for related documents- absolute value and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- absolute value and acute syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
- absolute value and low mortality: 1
- absolute value and lung disease: 1, 2
- absolute value and lymphocyte ratio: 1, 2
- activate gene and acute infection: 1
- activate gene and acute respiratory syndrome: 1, 2, 3, 4
- activate gene and acute syndrome: 1, 2, 3, 4
- activator janus kinase signal transducer and acute infection: 1, 2
- activator janus kinase signal transducer and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8
- activator janus kinase signal transducer and acute syndrome: 1, 2, 3, 4, 5, 6, 7, 8
- activator janus kinase signal transducer and lung disease: 1
- activator janus kinase signal transducer and lung epithelial cell: 1
- active form and acute infection: 1, 2, 3
- active form and acute respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- active form and acute syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- active form and lung epithelial cell: 1
- acute infection and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute infection and lung disease: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date