Author: Cekerevac, Ivan; Turnic, Tamara Nikolic; Draginic, Nevena; Andjic, Marijana; Zivkovic, Vladimir; Simovic, Stefan; Susa, Romana; Novkovic, Ljiljana; Mijailovic, Zeljko; Andjelkovic, Marija; Vukicevic, Vladimir; Vulovic, Tatjana; Jakovljevic, Vladimir
Title: Predicting Severity and Intrahospital Mortality in COVID-19: The Place and Role of Oxidative Stress Cord-id: sxk263hr Document date: 2021_3_26
ID: sxk263hr
Snippet: SARS-CoV-2 virus causes infection which led to a global pandemic in 2020 with the development of severe acute respiratory syndrome. Therefore, this study was aimed at examining its possible role in predicting severity and intrahospital mortality of COVID-19, alongside with other laboratory and biochemical procedures, clinical signs, symptoms, and comorbidity. This study, approved by the Ethical Committee of Clinical Center Kragujevac, was designed as an observational prospective cross-sectional
Document: SARS-CoV-2 virus causes infection which led to a global pandemic in 2020 with the development of severe acute respiratory syndrome. Therefore, this study was aimed at examining its possible role in predicting severity and intrahospital mortality of COVID-19, alongside with other laboratory and biochemical procedures, clinical signs, symptoms, and comorbidity. This study, approved by the Ethical Committee of Clinical Center Kragujevac, was designed as an observational prospective cross-sectional clinical study which was conducted on 127 patients with diagnosed respiratory COVID-19 viral infection from April to August 2020. The primary goals were to determine the predictors of COVID-19 severity and to determine the predictors of the negative outcome of COVID-19 infection. All patients were divided into three categories: patients with a mild form, moderate form, and severe form of COVID-19 infection. All biochemical and laboratory procedures were done on the first day of the hospital admission. Respiratory (p < 0.001) and heart (p = 0.002) rates at admission were significantly higher in patients with a severe form of COVID-19. From all observed hematological and inflammatory markers, only white blood cell count (9.43 ± 4.62, p = 0.001) and LDH (643.13 ± 313.3, p = 0.002) were significantly higher in the severe COVID-19 group. We have observed that in the severe form of SARS-CoV-2, the levels of superoxide anion radicals were substantially higher than those in two other groups (11.3 ± 5.66, p < 0.001) and the nitric oxide level was significantly lower in patients with the severe disease (2.66 ± 0.45, p < 0.001). Using a linear regression model, TA, anosmia, ageusia, O(2)(−), and the duration at the ICU are estimated as predictors of severity of SARS-CoV-2 disease. The presence of dyspnea and a higher heart rate were confirmed as predictors of a negative, fatal outcome. Results from our study show that presence of hypertension, anosmia, and ageusia, as well as the duration of ICU stay, and serum levels of O(2)(−) are predictors of COVID-19 severity, while the presence of dyspnea and an increased heart rate on admission were predictors of COVID-19 mortality.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and admission crp level: 1, 2
- acute ards respiratory distress syndrome and admission patient: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute ards respiratory distress syndrome and local inflammatory response: 1, 2, 3, 4
- acute ards respiratory distress syndrome and low icu admission: 1
- acute ards respiratory distress syndrome and low lymphocyte count: 1, 2
- acute ards respiratory distress syndrome and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute ards respiratory distress syndrome and low prevalence: 1, 2
- acute ards respiratory distress syndrome and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67
- acute ards respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
- acute ards respiratory distress syndrome and lung injury result: 1, 2, 3, 4, 5, 6
- acute ards respiratory distress syndrome and lung involvement: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
- acute ards respiratory distress syndrome and lymph tissue: 1
- acute ards respiratory distress syndrome and lymphocyte count: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37
- acute inflammation and admission crp level: 1
- acute inflammation and admission patient: 1, 2
- acute inflammation and local inflammatory response: 1, 2, 3
- acute inflammation and low mortality: 1, 2, 3
- acute inflammation and lung function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- acute inflammation and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
Co phrase search for related documents, hyperlinks ordered by date