Selected article for: "final model and medical record"

Author: Xing, Dongyang; Tian, Suyan; Chen, Yukun; Wang, Jinmei; Sun, Xuejuan; Li, Shanji; Xu, Jiancheng
Title: Establishment of a diagnostic model to distinguish coronavirus disease 2019 from influenza A based on laboratory findings
  • Cord-id: ao78s5yw
  • Document date: 2020_12_22
  • ID: ao78s5yw
    Snippet: Background: Coronavirus disease 2019 (COVID-19) and Influenza A are common disease caused by viral infection. The clinical symptoms and transmission routes of the two diseases are similar. However, there are no relevant studies on laboratory diagnostic models to discriminate COVID-19 and influenza A. This study aims at establishing a signature of laboratory findings to tell patients with COVID-19 apart from those with influenza A perfectly. Materials: In this study, 56 COVID-19 patients and 54 i
    Document: Background: Coronavirus disease 2019 (COVID-19) and Influenza A are common disease caused by viral infection. The clinical symptoms and transmission routes of the two diseases are similar. However, there are no relevant studies on laboratory diagnostic models to discriminate COVID-19 and influenza A. This study aims at establishing a signature of laboratory findings to tell patients with COVID-19 apart from those with influenza A perfectly. Materials: In this study, 56 COVID-19 patients and 54 influenza A patients were included. Laboratory findings, epidemiological characteristics and demographic data were obtained from electronic medical record databases. Elastic network models, followed by a stepwise logistic regression model were implemented to identify indicators capable of discriminating COVID-19 and influenza A. A nomogram is diagramed to show the resulting discriminative model. Results: The majority of hematological and biochemical parameters in COVID-19 patients were significantly different from those in influenza A patients. In the final model, albumin/globulin (A/G), total bilirubin (TBIL) and erythrocyte specific volume (HCT) were selected as predictors. Using an external dataset, the model was validated to perform well. Conclusion: A diagnostic model of laboratory findings was established, in which A/G, TBIL and HCT were included as highly relevant indicators for the segmentation of COVID-19 and influenza A, providing a complimentary means for the precise diagnosis of these two diseases.

    Search related documents:
    Co phrase search for related documents
    • acute ards respiratory distress syndrome and liver injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • acute ards respiratory distress syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
    • acute ards respiratory distress syndrome and machine learning method: 1
    • liver injury and machine learning: 1, 2, 3