Selected article for: "automatic diagnosis and diagnosis system"

Author: Zhou, Yi; Zhou, Tianfei; Zhou, Tao; Fu, Huazhu; Liu, Jiacheng; Shao, Ling
Title: Contrast-Attentive Thoracic Disease Recognition with Dual-Weighting Graph Reasoning.
  • Cord-id: lbms4pv6
  • Document date: 2021_1_6
  • ID: lbms4pv6
    Snippet: Automatic thoracic disease diagnosis is a rising research topic in the medical imaging community, with many potential applications. However, the inconsistent appearances and high complexities of various lesions in chest X-rays currently hinder the development of a reliable and robust intelligent diagnosis system. Attending to the high-probability abnormal regions and exploiting the priori of a related knowledge graph offers one promising route to addressing these issues. As such, in this paper,
    Document: Automatic thoracic disease diagnosis is a rising research topic in the medical imaging community, with many potential applications. However, the inconsistent appearances and high complexities of various lesions in chest X-rays currently hinder the development of a reliable and robust intelligent diagnosis system. Attending to the high-probability abnormal regions and exploiting the priori of a related knowledge graph offers one promising route to addressing these issues. As such, in this paper, we propose two contrastive abnormal attention models and a dual-weighting graph convolution to improve the performance of thoracic multi-disease recognition. First, a left-right lung contrastive network is designed to learn intra-attentive abnormal features to better identify the most common thoracic diseases, whose lesions rarely appear in both sides symmetrically. Moreover, an inter-contrastive abnormal attention model aims to compare the query scan with multiple anchor scans without lesions to compute the abnormal attention map. Once the intra- and inter-contrastive attentions are weighted over the features, in addition to the basic visual spatial convolution, a chest radiology graph is constructed for dual-weighting graph reasoning. Extensive experiments on the public NIH ChestX-ray and CheXpert datasets show that our model achieves consistent improvements over the state-of-the-art methods both on thoracic disease identification and localization.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1