Author: Singh, Satya Rajendra; Dubey, Shiv Ram; Shruthi, MS; Ventrapragada, Sairathan; Dasharatha, Saivamshi Salla
Title: Joint Triplet Autoencoder for Histopathological Colon Cancer Nuclei Retrieval Cord-id: ihekwtm0 Document date: 2021_5_21
ID: ihekwtm0
Snippet: Deep learning has shown a great improvement in the performance of visual tasks. Image retrieval is the task of extracting the visually similar images from a database for a query image. The feature matching is performed to rank the images. Various hand-designed features have been derived in past to represent the images. Nowadays, the power of deep learning is being utilized for automatic feature learning from data in the field of biomedical image analysis. Autoencoder and Siamese networks are two
Document: Deep learning has shown a great improvement in the performance of visual tasks. Image retrieval is the task of extracting the visually similar images from a database for a query image. The feature matching is performed to rank the images. Various hand-designed features have been derived in past to represent the images. Nowadays, the power of deep learning is being utilized for automatic feature learning from data in the field of biomedical image analysis. Autoencoder and Siamese networks are two deep learning models to learn the latent space (i.e., features or embedding). Autoencoder works based on the reconstruction of the image from latent space. Siamese network utilizes the triplets to learn the intra-class similarity and inter-class dissimilarity. Moreover, Autoencoder is unsupervised, whereas Siamese network is supervised. We propose a Joint Triplet Autoencoder Network (JTANet) by facilitating the triplet learning in autoencoder framework. A joint supervised learning for Siamese network and unsupervised learning for Autoencoder is performed. Moreover, the Encoder network of Autoencoder is shared with Siamese network and referred as the Siamcoder network. The features are extracted by using the trained Siamcoder network for retrieval purpose. The experiments are performed over Histopathological Routine Colon Cancer dataset. We have observed the promising performance using the proposed JTANet model against the Autoencoder and Siamese models for colon cancer nuclei retrieval in histopathological images.
Search related documents:
Co phrase search for related documents- achieve order and loss function: 1, 2
- achieve order and loss weight: 1, 2
- activation function and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- activation function and loss value: 1
- activation function and loss weight: 1, 2
- loss function and low dimensional: 1
Co phrase search for related documents, hyperlinks ordered by date