Selected article for: "function gain and gene expression"

Author: Bruggeman, Leslie A; Sedor, John R; O'Toole, John F
Title: Apolipoprotein L1 and mechanisms of kidney disease susceptibility.
  • Cord-id: 9b6z7dxr
  • Document date: 2021_5_1
  • ID: 9b6z7dxr
    Snippet: PURPOSE OF REVIEW Allelic variants in the gene for apolipoprotein L1 (APOL1), found only in individuals of African ancestry, explain a majority of the excess risk of kidney disease in African Americans. However, a clear understanding how the disease-associated APOL1 variants cause kidney injury and the identity of environmental stressors that trigger the injury process have not been determined. RECENT FINDINGS Basic mechanistic studies of APOL1 biochemistry and cell biology, bolstered by new ant
    Document: PURPOSE OF REVIEW Allelic variants in the gene for apolipoprotein L1 (APOL1), found only in individuals of African ancestry, explain a majority of the excess risk of kidney disease in African Americans. However, a clear understanding how the disease-associated APOL1 variants cause kidney injury and the identity of environmental stressors that trigger the injury process have not been determined. RECENT FINDINGS Basic mechanistic studies of APOL1 biochemistry and cell biology, bolstered by new antibody reagents and inducible pluripotent stem cell-derived cell systems, have focused on the cytotoxic effect of the risk variants when APOL1 gene expression is induced. Since the APOL1 variants evolved to alter a key protein-protein interaction with the trypanosome serum resistance-associated protein, additional studies have begun to address differences in APOL1 interactions with other proteins expressed in podocytes, including new observations that APOL1 variants may alter podocyte cytoskeleton dynamics. SUMMARY A unified mechanism of pathogenesis for the various APOL1 nephropathies still remains unclear and controversial. As ongoing studies have consistently implicated the pathogenic gain-of-function effects of the variant proteins, novel therapeutic development inhibiting the synthesis or function of APOL1 proteins is moving toward clinical trials.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date