Author: Yang, Jing; Shen, Zhen; Dong, Xisong; Shang, Xiuqin; Li, Wei; Xiong, Gang
Title: The Prediction of the Epidemic Trend of COVID-19 Using Neural Networks Cord-id: ltox90hf Document date: 2020_12_31
ID: ltox90hf
Snippet: In this paper, a BP neural network and an LSTM network are applied respectively to the prediction of Coronavirus Disease 2019 (COVID-19) in Wuhan, China and South Korea. The methods do not require specific theories of modelling and the predicted values can be obtained as long as the conventional parameters are set. The mean absolute percentage error (MAPE) of all the experiments are below 5% and the values of the determinable coefficient R2 are all larger than 0.9. The experiments show that the
Document: In this paper, a BP neural network and an LSTM network are applied respectively to the prediction of Coronavirus Disease 2019 (COVID-19) in Wuhan, China and South Korea. The methods do not require specific theories of modelling and the predicted values can be obtained as long as the conventional parameters are set. The mean absolute percentage error (MAPE) of all the experiments are below 5% and the values of the determinable coefficient R2 are all larger than 0.9. The experiments show that the models can fit the actual values well and make relatively accurate predictions. As of March 29, 2020, the cumulative number of confirmed cases in Wuhan is expected to reach 50,068 using BP neural networks and 49,972 using LSTM network, respectively. As of April 13, 2020, the cumulative number of confirmed cases in South Korea is expected to reach 8,862 using BP neural networks and 8,716 using LSTM network, respectively. The models of neural networks are effective in predicting the trend of the COVID-19 epidemic, which is meaningful to prevent and control the epidemic.
Search related documents:
Co phrase search for related documents- long lstm short term memory and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long lstm short term memory and lstm network apply: 1
- long lstm short term memory and lstm network bp neural network: 1
- long lstm short term memory and lstm network include: 1, 2
- long lstm short term memory and lstm network layer: 1, 2, 3
- long lstm short term memory and lstm network long term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- long lstm short term memory and lstm prediction model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- long lstm short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
- long lstm short term memory and machine learning method: 1, 2, 3
- long lstm short term memory and machine translation: 1
- long term memory and loss function: 1, 2, 3, 4, 5
- long term memory and lstm network: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- loss function and lstm network: 1, 2
- loss function and lstm network long term memory: 1
- loss function and lstm short term memory: 1, 2, 3, 4
- loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- loss function and machine learning method: 1
- lstm network and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
Co phrase search for related documents, hyperlinks ordered by date