Author: Yang, Jing; Shen, Zhen; Dong, Xisong; Shang, Xiuqin; Li, Wei; Xiong, Gang
Title: The Prediction of the Epidemic Trend of COVID-19 Using Neural Networks Cord-id: ltox90hf Document date: 2020_12_31
ID: ltox90hf
Snippet: In this paper, a BP neural network and an LSTM network are applied respectively to the prediction of Coronavirus Disease 2019 (COVID-19) in Wuhan, China and South Korea. The methods do not require specific theories of modelling and the predicted values can be obtained as long as the conventional parameters are set. The mean absolute percentage error (MAPE) of all the experiments are below 5% and the values of the determinable coefficient R2 are all larger than 0.9. The experiments show that the
Document: In this paper, a BP neural network and an LSTM network are applied respectively to the prediction of Coronavirus Disease 2019 (COVID-19) in Wuhan, China and South Korea. The methods do not require specific theories of modelling and the predicted values can be obtained as long as the conventional parameters are set. The mean absolute percentage error (MAPE) of all the experiments are below 5% and the values of the determinable coefficient R2 are all larger than 0.9. The experiments show that the models can fit the actual values well and make relatively accurate predictions. As of March 29, 2020, the cumulative number of confirmed cases in Wuhan is expected to reach 50,068 using BP neural networks and 49,972 using LSTM network, respectively. As of April 13, 2020, the cumulative number of confirmed cases in South Korea is expected to reach 8,862 using BP neural networks and 8,716 using LSTM network, respectively. The models of neural networks are effective in predicting the trend of the COVID-19 epidemic, which is meaningful to prevent and control the epidemic.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome and additionally design: 1
- acute respiratory syndrome and adjustment growth model: 1
- acute respiratory syndrome and logical reasoning: 1
- acute respiratory syndrome and long distance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- acute respiratory syndrome and long lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8
- acute respiratory syndrome and long term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- acute respiratory syndrome and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40
- acute respiratory syndrome and lstm network: 1, 2, 3, 4
- acute respiratory syndrome and lstm network long term memory: 1, 2, 3
- acute respiratory syndrome and lstm prediction model: 1
- acute respiratory syndrome and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute respiratory syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
- acute respiratory syndrome and machine learning method: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
- acute respiratory syndrome and machine translation: 1
- long distance and machine learning: 1
- loss function and lstm network: 1, 2
- loss function and lstm network long term memory: 1
- loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
- loss function and machine learning method: 1
Co phrase search for related documents, hyperlinks ordered by date