Selected article for: "animal model and cell infiltration"

Author: Ireland, D J; Kemp, M W; Miura, Y; Saito, M; Newnham, J P; Keelan, J A
Title: Intra-amniotic pharmacological blockade of inflammatory signalling pathways in an ovine chorioamnionitis model.
  • Cord-id: jqaqjm6a
  • Document date: 2015_1_1
  • ID: jqaqjm6a
    Snippet: Intrauterine inflammation (IUI) associated with infection is the major cause of preterm birth (PTB) at <32 weeks' gestation and accounts for ∼40% of all spontaneous PTBs. Pharmacological strategies to prevent PTB and improve fetal outcomes will likely require both antimicrobial and anti-inflammatory therapies. Here we investigated the effects of two cytokine-suppressive anti-inflammatory drugs (CSAIDs), compounds that specifically target inflammatory signalling pathways, in an ovine model of l
    Document: Intrauterine inflammation (IUI) associated with infection is the major cause of preterm birth (PTB) at <32 weeks' gestation and accounts for ∼40% of all spontaneous PTBs. Pharmacological strategies to prevent PTB and improve fetal outcomes will likely require both antimicrobial and anti-inflammatory therapies. Here we investigated the effects of two cytokine-suppressive anti-inflammatory drugs (CSAIDs), compounds that specifically target inflammatory signalling pathways, in an ovine model of lipopolysaccharide (LPS)-induced chorioamnionitis. Chronically catheterized ewes at 116 days gestation (n = 7/group) received an intra-amniotic (IA) bolus of LPS (10 mg) plus vehicle or CSAIDS: TPCA-1 (1.2 mg/kg fetal weight) or 5z-7-oxozeaenol (OxZnl; 0.4 mg/kg fetal weight); controls received vehicle (dimethylsulphoxide). Amniotic fluid (AF), fetal and maternal blood samples were taken 0, 2, 6, 12, 24 and 48 h later; tissues were taken at autopsy (48 h). Administration of TPCA-1 or OxZnl abrogated the stimulatory effects of LPS (P < 0.01 versus vehicle control) on production of PGE2 in AF, with lesser (non-significant) effects on IL-6 production. Fetal membrane polymorphonuclear cell infiltration score was significantly higher in LPS versus vehicle control animals (P < 0.01), and this difference was absent with TPCA-1 and OxZnl treatment. LPS-induced systemic fetal inflammation was highly variable, with no significant effects of CSAIDs observed. Lung inflammation was evident with LPS exposure, but unaffected by CSAID treatment. We have shown in a large animal model that IA administration of a single dose of CSAIDs can suppress LPS-induced IA inflammatory responses, while fetal effects were minimal. Further development and investigation of these compounds in infectious models is warranted.

    Search related documents:
    Co phrase search for related documents
    • lps induce and lung inflammation: 1, 2, 3, 4, 5, 6