Author: Kowalewski, Joel; Ray, Anandasankar
                    Title: Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space  Cord-id: g1qxo01i  Document date: 2020_8_6
                    ID: g1qxo01i
                    
                    Snippet: There is an urgent need for the identification of effective therapeutics for COVID-19 and we have developed a machine learning drug discovery pipeline to identify several drug candidates. First, we collect assay data for 65 target human proteins known to interact with the SARS-CoV-2 proteins, including the ACE2 receptor. Next, we train machine learning models to predict inhibitory activity and use them to screen FDA registered chemicals and approved drugs (∼100,000) and ∼14 million purchasab
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: There is an urgent need for the identification of effective therapeutics for COVID-19 and we have developed a machine learning drug discovery pipeline to identify several drug candidates. First, we collect assay data for 65 target human proteins known to interact with the SARS-CoV-2 proteins, including the ACE2 receptor. Next, we train machine learning models to predict inhibitory activity and use them to screen FDA registered chemicals and approved drugs (∼100,000) and ∼14 million purchasable chemicals. We filter predictions according to estimated mammalian toxicity and vapor pressure. Prospective volatile candidates are proposed as novel inhaled therapeutics since the nasal cavity and respiratory tracts are early bottlenecks for infection. We also identify candidates that act across multiple targets as promising for future analyses. We anticipate that this theoretical study can accelerate testing of two categories of therapeutics: repurposed drugs suited for short-term approval, and novel efficacious drugs suitable for a long-term follow up.
 
  Search related documents: 
                                Co phrase  search for related documents- absolute difference and machine learning: 1, 2
  - absolute difference and mae mean absolute error: 1, 2, 3, 4
  - absolute error and accurate prediction: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
  - absolute error and long short: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
  - absolute error and long short term: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
  - absolute error and machine algorithm: 1, 2, 3, 4, 5, 6, 7
  - absolute error and machine learn: 1
  - absolute error and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
  - absolute error and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
  - absolute error and mae mean absolute error: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73
  - accordingly machine learning model and accurate prediction: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date