Author: DÃaz, José
Title: SARS-CoV-2 Molecular Network Structure Cord-id: g5frxip0 Document date: 2020_7_10
ID: g5frxip0
Snippet: Knowledge about the molecular basis of SARS-CoV-2 infection is incipient. However, recent experimental results about the virus interactome have shown that this single-positive stranded RNA virus produces a set of about 28 specific proteins grouped into 16 non-structural proteins (Nsp1 to Nsp16), four structural proteins (E, M, N, and S), and eight accessory proteins (orf3a, orf6, orf7a, orf7b, orf8, orf9b, orf9c, and orf10). In this brief communication, the network model of the interactome of th
Document: Knowledge about the molecular basis of SARS-CoV-2 infection is incipient. However, recent experimental results about the virus interactome have shown that this single-positive stranded RNA virus produces a set of about 28 specific proteins grouped into 16 non-structural proteins (Nsp1 to Nsp16), four structural proteins (E, M, N, and S), and eight accessory proteins (orf3a, orf6, orf7a, orf7b, orf8, orf9b, orf9c, and orf10). In this brief communication, the network model of the interactome of these viral proteins with the host proteins is analyzed. The statistical analysis of this network shows that it has a modular scale-free topology in which the virus proteins orf8, M, and Nsp7 are the three nodes with the most connections (links). This result suggests the possibility that a simultaneous pharmacological attack on these hubs could assure the destruction of the network and the elimination of the virus.
Search related documents:
Co phrase search for related documents- accessory protein and lung alveolar type ii: 1
Co phrase search for related documents, hyperlinks ordered by date