Author: Labadie, Thomas; Roy, Polly
Title: A non-enveloped arbovirus released in lysosome-derived extracellular vesicles induces super-infection exclusion Cord-id: 9mrde93x Document date: 2020_8_11
ID: 9mrde93x
Snippet: Recent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and observed that the majority of viruses are released in EVs, both in vitro and in the blood of infected animals. Based
Document: Recent developments on extracellular vesicles (EVs) containing multiple virus particles challenge the rigid definition of non-enveloped viruses. However, how non-enveloped viruses hijack cell machinery to promote non-lytic release in EVs, and their functional roles, remain to be clarified. Here we used Bluetongue virus (BTV) as a model of a non-enveloped arthropod-borne virus and observed that the majority of viruses are released in EVs, both in vitro and in the blood of infected animals. Based on the cellular proteins detected in these EVs, and use of inhibitors targeting the cellular degradation process, we demonstrated that these extracellular vesicles are derived from secretory lysosomes, in which the acidic pH is neutralized upon the infection. Moreover, we report that secreted EVs are more efficient than free-viruses for initiating infections, but that they trigger super-infection exclusion that only free-viruses can overcome. Author summary Recent discoveries of non-enveloped virus secreted in EVs opened the door to new developments in our understanding of the transmission and pathogenicity of these viruses. In particular, how these viruses hijack the host cellular secretion machinery, and the role of these EVs compared with free-virus particles remained to be explored. Here, we tackled these two aspects, by studying BTV, an emerging arthropod-borne virus causing epidemics worldwide. We showed that this virus is mainly released in EVs, in vivo and in the blood of infected animals, and that inhibition of the cell degradation machinery decreases the release of infectious EVs, but not free-virus particles. We found that BTV must neutralize the pH of lysosomes, which are important organelles of the cell degradation machinery, for efficient virus release in EVs. Our results highlight unique features for a virus released in EVs, explaining how BTV transits in lysosomes without being degraded. Interestingly, we observed that EVs are more infectious than free-virus particles, but only free-viruses are able to overcome the super-infection exclusion, which is a common cellular defense mechanism. In conclusion, our study stresses the dual role played by both forms, free and vesicular, in the virus life cycle.
Search related documents:
Co phrase search for related documents- absence presence and low density: 1, 2, 3
- absence presence and low volume: 1, 2
- absence presence and lysis buffer: 1, 2, 3, 4, 5
- low density and lysis buffer: 1
- low density and lysosomal cathepsin protein: 1
Co phrase search for related documents, hyperlinks ordered by date