Author: Elkin, Magdalyn E.; Zhu, Xingquan
                    Title: Understanding and predicting COVID-19 clinical trial completion vs. cessation  Cord-id: sm8j8o6t  Document date: 2021_7_12
                    ID: sm8j8o6t
                    
                    Snippet: As of March 30 2021, over 5,193 COVID-19 clinical trials have been registered through Clinicaltrial.gov. Among them, 191 trials were terminated, suspended, or withdrawn (indicating the cessation of the study). On the other hand, 909 trials have been completed (indicating the completion of the study). In this study, we propose to study underlying factors of COVID-19 trial completion vs. cessation, and design predictive models to accurately predict whether a COVID-19 trial may complete or cease in
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: As of March 30 2021, over 5,193 COVID-19 clinical trials have been registered through Clinicaltrial.gov. Among them, 191 trials were terminated, suspended, or withdrawn (indicating the cessation of the study). On the other hand, 909 trials have been completed (indicating the completion of the study). In this study, we propose to study underlying factors of COVID-19 trial completion vs. cessation, and design predictive models to accurately predict whether a COVID-19 trial may complete or cease in the future. We collect 4,441 COVID-19 trials from ClinicalTrial.gov to build a testbed, and design four types of features to characterize clinical trial administration, eligibility, study information, criteria, drug types, study keywords, as well as embedding features commonly used in the state-of-the-art machine learning. Our study shows that drug features and study keywords are most informative features, but all four types of features are essential for accurate trial prediction. By using predictive models, our approach achieves more than 0.87 AUC (Area Under the Curve) score and 0.81 balanced accuracy to correctly predict COVID-19 clinical trial completion vs. cessation. Our research shows that computational methods can deliver effective features to understand difference between completed vs. ceased COVID-19 trials. In addition, such models can also predict COVID-19 trial status with satisfactory accuracy, and help stakeholders better plan trials and minimize costs.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
 
                                Co phrase  search for related documents, hyperlinks ordered by date