Author: Hagan, Rachael; Gillan, Charles J.; Spence, Ivor; McAuley, Danny; Shyamsundar, Murali
Title: Comparing Regression and Neural Network techniques for personalised predictive analytics to promote lung protective We repeated this process for all points in the time series, for each patient and report the RMSE value per method.ventilation in Intensive Care Units Cord-id: bk71ijc3 Document date: 2020_10_8
ID: bk71ijc3
Snippet: Mechanical ventilation is a lifesaving tool and provides organ support for patients with respiratory failure. However, injurious ventilation due to inappropriate delivery of high tidal volume can initiate or potentiate lung injury. This could lead to acute respiratory distress syndrome, longer duration of mechanical ventilation, ventilator associated conditions and finally increased mortality. In this study, we explore the viability and compare machine learning methods to generate personalized p
Document: Mechanical ventilation is a lifesaving tool and provides organ support for patients with respiratory failure. However, injurious ventilation due to inappropriate delivery of high tidal volume can initiate or potentiate lung injury. This could lead to acute respiratory distress syndrome, longer duration of mechanical ventilation, ventilator associated conditions and finally increased mortality. In this study, we explore the viability and compare machine learning methods to generate personalized predictive alerts indicating violation of the safe tidal volume per ideal body weight (IBW) threshold that is accepted as the upper limit for lung protective ventilation (LPV), prior to application to patients. We process streams of patient respiratory data recorded per minute from ventilators in an intensive care unit and apply several state-of-the-art time series prediction methods to forecast the behavior of the tidal volume metric per patient, one hour ahead. Our results show that boosted regression delivers better predictive accuracy than other methods that we investigated and requires relatively short execution times. Long short-term memory neural networks can deliver similar levels of accuracy but only after much longer periods of data acquisition, further extended by several hours computing time to train the algorithm. Utilizing Artificial Intelligence, we have developed a personalized clinical decision support tool that can predict tidal volume behavior within [Formula: see text] accuracy and compare alerts recorded from a real world system to highlight that our models would have predicted violations one hour ahead and can therefore conclude that the algorithms can provide clinical decision support.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and low mortality: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- acute ards respiratory distress syndrome and low tidal volume: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
- acute ards respiratory distress syndrome and lpv lung protective ventilation: 1, 2, 3, 4
- acute ards respiratory distress syndrome and lung compliance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
- acute ards respiratory distress syndrome and lung compliance improvement: 1, 2
- acute ards respiratory distress syndrome and lung compliance reduction: 1
- acute ards respiratory distress syndrome and lung injury: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75
- acute ards respiratory distress syndrome and lung injury development: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
- acute ards respiratory distress syndrome and lung injury lead: 1, 2, 3, 4, 5, 6, 7, 8, 9
- acute ards respiratory distress syndrome and lung parenchyma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- acute ards respiratory distress syndrome and lung protection: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute ards respiratory distress syndrome and lung protective ventilation: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
- acute ards respiratory distress syndrome and lung stress: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute ards respiratory distress syndrome and lung ultrasound: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and lung water: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acute ards respiratory distress syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
- acute ards respiratory distress syndrome patient and lpv lung protective ventilation: 1
- acute ards respiratory distress syndrome patient and lung compliance: 1
- acute ards respiratory distress syndrome patient and lung injury: 1, 2, 3, 4, 5, 6
Co phrase search for related documents, hyperlinks ordered by date