Author: Mastromichalakis, Stamatis
Title: ALReLU: A different approach on Leaky ReLU activation function to improve Neural Networks Performance Cord-id: gg9lrlnk Document date: 2020_12_11
ID: gg9lrlnk
Snippet: Despite the unresolved 'dying ReLU problem', the classical ReLU activation function (AF) has been extensively applied in Deep Neural Networks (DNN), in particular Convolutional Neural Networks (CNN), for image classification. The common gradient issues of ReLU pose challenges in applications on academy and industry sectors. Recent approaches for improvements are in a similar direction by just proposing variations of the AF, such as Leaky ReLU (LReLU), while maintaining the solution within the sa
Document: Despite the unresolved 'dying ReLU problem', the classical ReLU activation function (AF) has been extensively applied in Deep Neural Networks (DNN), in particular Convolutional Neural Networks (CNN), for image classification. The common gradient issues of ReLU pose challenges in applications on academy and industry sectors. Recent approaches for improvements are in a similar direction by just proposing variations of the AF, such as Leaky ReLU (LReLU), while maintaining the solution within the same unresolved gradient problems. In this paper, the Absolute Leaky ReLU (ALReLU) AF, a variation of LReLU, is proposed, as an alternative method to resolve the common 'dying ReLU problem' on NN-based algorithms for supervised learning. The experimental results demonstrate that by using the absolute values of LReLU's small negative gradient, has a significant improvement in comparison with LReLU and ReLU, on image classification of diseases such as COVID-19, text and tabular data classification tasks on five different datasets.
Search related documents:
Co phrase search for related documents- accuracy f1 score precision and activation function: 1, 2, 3
- accuracy f1 score precision recall and activation function: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date