Selected article for: "CPAP positive airway pressure and oxygen therapy"

Author: Hebbink, Rutger Hendrik Johan; Elshof, Judith; Wanrooij, Steven; Lette, Walter; Lokate, Mariëtte; Venner, Cornelis Henricus; Duiverman, M L; Hagmeijer, Rob
Title: Passive Tracer Visualization to Simulate Aerodynamic Virus Transport in Noninvasive Respiratory Support Methods
  • Cord-id: v73q5mxt
  • Document date: 2021_1_1
  • ID: v73q5mxt
    Snippet: BACKGROUND: Various forms of noninvasive respiratory support methods are used in the treatment of hypoxemic CO-VID-19 patients, but limited data are available about the corresponding respiratory droplet dispersion. OBJECTIVES: The aim of this study was to estimate the potential spread of infectious diseases for a broad selection of oxygen and respiratory support methods by revealing the therapy-induced aerodynamics and respiratory droplet dispersion. METHODS: The exhaled air-smoke plume from a 3
    Document: BACKGROUND: Various forms of noninvasive respiratory support methods are used in the treatment of hypoxemic CO-VID-19 patients, but limited data are available about the corresponding respiratory droplet dispersion. OBJECTIVES: The aim of this study was to estimate the potential spread of infectious diseases for a broad selection of oxygen and respiratory support methods by revealing the therapy-induced aerodynamics and respiratory droplet dispersion. METHODS: The exhaled air-smoke plume from a 3D-printed upper airway geometry was visualized by recording light reflection during simulated spontaneous breathing, standard oxygen mask application, nasal high-flow therapy (NHFT), continuous positive airway pressure (CPAP), and bilevel positive airway pressure (BiPAP). The dispersion of 100 µm particles was estimated from the initial velocity of exhaled air and the theoretical terminal velocity. RESULTS: Estimated droplet dispersion was 16 cm for unassisted breathing, 10 cm for Venturi masks, 13 cm for the nebulizer, and 14 cm for the nonrebreathing mask. Estimated droplet spread increased up to 34 cm in NHFT, 57 cm in BiPAP, and 69 cm in CPAP. A nonsurgical face mask over the NHFT interface reduced estimated droplet dispersion. CONCLUSIONS: During NHFT and CPAP/BiPAP with vented masks, extensive jets with relatively high jet velocities were observed, indicating increased droplet spread and an increased risk of droplet-driven virus transmission. For the Venturi masks, a nonrebreathing mask, and a nebulizer, estimated jet velocities are comparable to unassisted breathing. Aerosols are transported unboundedly in all these unfiltered therapies. The adequate use of protective measures is of vital importance when using noninvasive unfiltered therapies in infectious respiratory diseases.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1
    Co phrase search for related documents, hyperlinks ordered by date