Author: Schneider, Crispin; Johnson, Sean P; Walker-Samuel, Simon; Gurusamy, Kurinchi; Clarkson, Matthew J; Thompson, Stephen; Song, Yi; Totz, Johannes; Cook, Richard J; Desjardins, Adrien E; Hawkes, David J; Davidson, Brian R
Title: Utilizing confocal laser endomicroscopy for evaluating the adequacy of laparoscopic liver ablation. Cord-id: unsex9el Document date: 2016_1_1
ID: unsex9el
Snippet: BACKGROUND Laparoscopic liver ablation therapy can be used for the treatment of primary and secondary liver malignancy. The increased incidence of cancer recurrence associated with this approach, has been attributed to the inability of monitoring the extent of ablated liver tissue. METHODS The feasibility of assessing liver ablation with probe-based confocal laser endomicroscopy (CLE) was studied in a porcine model of laparoscopic microwave liver ablation. Following the intravenous injection of
Document: BACKGROUND Laparoscopic liver ablation therapy can be used for the treatment of primary and secondary liver malignancy. The increased incidence of cancer recurrence associated with this approach, has been attributed to the inability of monitoring the extent of ablated liver tissue. METHODS The feasibility of assessing liver ablation with probe-based confocal laser endomicroscopy (CLE) was studied in a porcine model of laparoscopic microwave liver ablation. Following the intravenous injection of the fluorophores fluorescein and indocyanine green, CLE images were recorded at 488 nm and 660 nm wavelength and compared to liver histology. Statistical analysis was performed to assess if fluorescence intensity change can predict the presence of ablated liver tissue. RESULTS CLE imaging of fluorescein at 488 nm provided good visualization of the hepatic microvasculature; whereas, CLE imaging of indocyanine green at 660 nm enabled detailed visualization of hepatic sinusoid architecture and interlobular septations. Fluorescence intensity as measured in relative fluorescence units was found to be 75-100% lower in ablated compared to healthy liver regions. General linear mixed modeling and ROC analysis found the decrease in fluorescence to be statistically significant. CONCLUSION Laparoscopic, dual wavelength CLE imaging using two different fluorophores enables clinically useful visualization of multiple liver tissue compartments, in greater detail than is possible at a single wavelength. CLE imaging may provide valuable intraoperative information on the extent of laparoscopic liver ablation.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date