Author: Mei, Di; Guo, Xiaolong; Wang, Yirong; Huang, Xiaofei; Guo, Li; Zou, Pengfei; Ge, Delong; Wang, Xinxin; Lee, Wenhui; Sun, Tongyi; Gao, Zhiqin; Gao, Yuanyuan
Title: PEGylated Graphene Oxide Carried OH-CATH30 to Accelerate the Healing of Infected Skin Wounds Cord-id: zajmys00 Document date: 2021_7_13
ID: zajmys00
Snippet: BACKGROUND: The treatment of Staphylococcus aureus (S. aureus)-infected wounds is difficult. It causes extreme pain to tens of thousands of patients and increases the cost of medical care. The antimicrobial peptide OH-CATH30 (OH30) has a good killing activity against S. aureus and can play a role in accelerating wound healing and immune regulation. Therefore, it shows great potential for wound healing. PURPOSE: The aim of this study was to overcome the short half-life and easy enzymolysis of OH3
Document: BACKGROUND: The treatment of Staphylococcus aureus (S. aureus)-infected wounds is difficult. It causes extreme pain to tens of thousands of patients and increases the cost of medical care. The antimicrobial peptide OH-CATH30 (OH30) has a good killing activity against S. aureus and can play a role in accelerating wound healing and immune regulation. Therefore, it shows great potential for wound healing. PURPOSE: The aim of this study was to overcome the short half-life and easy enzymolysis of OH30 by using graphene oxide conjugated with polyethylene glycol to load OH30 (denoted as PGO-OH30), as well as to evaluate its effect on wounds infected by S. aureus. METHODS: PGO-OH30 nanoparticles were prepared by π–π conjugation and characterized. Their cell cytotoxicity, cell migration, infectious full-thickness dermotomy models, and histopathology were evaluated. RESULTS: Characterization and cytotoxicity experiments revealed that the PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability. Cell-migration experiments showed that PGO-OH30 could promote the migration of human immortalized keratinocytes (HaCaT) cells compared with the control group (P<0.05). In a mouse model of skin wound infection, PGO-OH30 accelerated skin-wound healing and reduced the amount of S. aureus in wounds compared with the control group (P<0.05). In particular, on day 7, the number of S. aureus was 100 times lower in the PGO-OH30 group than in the control group. CONCLUSION: The PGO-OH30 drug-delivery system had good biocompatibility and excellent drug-delivery ability, indicating its good therapeutic effect on a skin wound-infection model.
Search related documents:
Co phrase search for related documents- action mechanism and low toxicity: 1, 2, 3, 4, 5, 6, 7
- activity exert and low cytotoxicity: 1
- activity exert and low toxicity: 1
- loading efficiency and low toxicity: 1
Co phrase search for related documents, hyperlinks ordered by date