Author: Lagoumintzis, George; Chasapis, Christos T.; Alexandris, Nikolaos; Tzartos, Socrates; Eliopoulos, Elias; Farsalinos, Konstantinos; Poulas, Konstantinos
Title: COVID-19 and Cholinergic Anti-inflammatory Pathway: In silico Identification of an Interaction between α7 Nicotinic Acetylcholine Receptor and the Cryptic Epitopes of SARS-CoV and SARS-CoV-2 Spike Glycoproteins Cord-id: zklols8j Document date: 2020_8_21
ID: zklols8j
Snippet: SARS-CoV-2 is the coronavirus that originated in Wuhan in December 2019 and has spread globally. The observation of a low prevalence of smokers among hospitalized COVID-19 patients has led to the development of a hypothesis that nicotine could have protective effects by enhancing the cholinergic anti-inflammatory pathway. Based on clinical data and on modelling and docking experiments we have previously presented the potential interaction between SARS-CoV-2 Spike glycoprotein and nicotinic acety
Document: SARS-CoV-2 is the coronavirus that originated in Wuhan in December 2019 and has spread globally. The observation of a low prevalence of smokers among hospitalized COVID-19 patients has led to the development of a hypothesis that nicotine could have protective effects by enhancing the cholinergic anti-inflammatory pathway. Based on clinical data and on modelling and docking experiments we have previously presented the potential interaction between SARS-CoV-2 Spike glycoprotein and nicotinic acetylcholine receptors (nAChRs), due to a “toxin-like†epitope on the Spike Glycoprotein, with homology to a sequence of a snake venom toxin. We here present that this epitope coincides with the well-described cryptic epitope for the human antibody CR3022 and with the epitope for the recently described COVA1-16 antibody. Both antibodies are recognizing neighboring epitopes, are not interfering with the ACE2 protein and are not able to inhibit SARS-CoV and SARS-CoV-2 infections. In this study we present the molecular complexes of both SARS-CoV and SARS-CoV-2 Spike Glycoproteins, at their open or closed conformations, with the molecular model of the human α7 nAChR. We found that the interface of all studied protein complexes involves a large part of the “toxin-like†sequences of SARS-CoV and SARS-CoV-2 Spike glycoproteins and toxin binding site of human α7 nAChR.
Search related documents:
Co phrase search for related documents- accelerated vaccine and acute sars respiratory syndrome: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- acetylcholine receptor and acute sars respiratory syndrome: 1, 2, 3, 4, 5
- acute sars respiratory syndrome and adaptive immunity: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72
Co phrase search for related documents, hyperlinks ordered by date