Author: Baqui, P.; Marra, V.; Alaa, A. M.; Bica, I.; Ercole, A.; van der Schaar, M.
Title: Comparing COVID-19 risk factors in Brazil using machine learning: the importance of socioeconomic, demographic and structural factors Cord-id: ufexvs39 Document date: 2021_3_12
ID: ufexvs39
Snippet: Background: The COVID-19 pandemic continues to have a devastating impact on Brazil. Brazil's social, health and economic crises are aggravated by strong societal inequities and persisting political disarray. This complex scenario motivates careful study of the clinical, socioeconomic, demographic and structural factors contributing to increased risk of mortality from SARS-CoV-2 in Brazil specifically. Methods: We consider the Brazilian SIVEP-Gripe catalog, a very rich respiratory infection datas
Document: Background: The COVID-19 pandemic continues to have a devastating impact on Brazil. Brazil's social, health and economic crises are aggravated by strong societal inequities and persisting political disarray. This complex scenario motivates careful study of the clinical, socioeconomic, demographic and structural factors contributing to increased risk of mortality from SARS-CoV-2 in Brazil specifically. Methods: We consider the Brazilian SIVEP-Gripe catalog, a very rich respiratory infection dataset which allows us to estimate the importance of several non-laboratorial and socio-geographic factors on COVID-19 mortality. We analyze the catalog using machine learning algorithms to account for likely complex interdependence between metrics. Findings: The XGBoost algorithm achieved excellent performance, producing an AUC-ROC of 0.813 (95%CI 0.810-0.817), and outperforming logistic regression. Using our model we found that, in Brazil, socioeconomic, geographical and structural factors are more important than individual comorbidities. Particularly important factors were: The state of residence and its development index; the distance to the hospital (especially for rural and less developed areas); the level of education; hospital funding model and strain. Ethnicity is also confirmed to be more important than comorbidities but less than the aforementioned factors. Interpretation: Socioeconomic and structural factors are as important as biological factors in determining the outcome of COVID-19. This has important consequences for policy making, especially on vaccination/non-pharmacological preventative measures, hospital management and healthcare network organization.
Search related documents:
Co phrase search for related documents- acute respiratory syndrome and living condition: 1, 2
- acute respiratory syndrome and local evaluation: 1, 2
- acute respiratory syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and logistic regression auc: 1, 2, 3, 4
- acute respiratory syndrome and low performance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
- acute respiratory syndrome and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute respiratory syndrome and machine learning approach: 1, 2, 3, 4, 5, 6
- acute respiratory syndrome and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- admission week and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9
- living condition and logistic regression: 1, 2, 3, 4, 5, 6
- local evaluation and logistic regression: 1
- local evaluation and machine learning: 1
- local evaluation and machine learning approach: 1
- local evaluation and machine learning model: 1
- logistic regression and low performance: 1, 2, 3, 4, 5, 6, 7, 8
- logistic regression and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression and machine learning approach: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18
- logistic regression and machine learning model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- logistic regression auc and machine learning model: 1, 2, 3
Co phrase search for related documents, hyperlinks ordered by date