Selected article for: "epidemic start and incubation period"

Author: Saleh, M. E.; Saleh, Z. E.
Title: A New Mathematical Approach for the Estimation of epidemic Model Parameters with Demonstration on COVID-19 Pandemic in Libya
  • Cord-id: byvxg8o1
  • Document date: 2020_7_21
  • ID: byvxg8o1
    Snippet: Background: The SEIR model or a variation of it is commonly used to study epidemic spread and make predictions on how it evolves. It is used to guide officials in their response to an epidemic. This research demonstrates an effective and simple approach that estimates the parameters of any variations of the SEIR model. This new technique will be demonstrated on the spread of COVID-19 in Libya. Methods: A five compartmental epidemic model is used to model the COVID-19 pandemic in Libya. Two sets
    Document: Background: The SEIR model or a variation of it is commonly used to study epidemic spread and make predictions on how it evolves. It is used to guide officials in their response to an epidemic. This research demonstrates an effective and simple approach that estimates the parameters of any variations of the SEIR model. This new technique will be demonstrated on the spread of COVID-19 in Libya. Methods: A five compartmental epidemic model is used to model the COVID-19 pandemic in Libya. Two sets of data are needed to evaluate the model parameters, the cumulative number of symptomatic cases and the total number of active cases. This data along with the assumption that the cumulative number of symptomatic cases grows exponentially, to determine most of the model parameters. Results: Libya epidemic start-date was estimated as t_o=-18.5 days, corresponding to May 5th. We mathematically demonstrated that the number of active cases follows two competing exponential distributions: a positive exponential function, measuring how many new cases are added, and a negative exponential function, measuring how many cases recovered. From this distribution we showed that the average recovery time is 48 days, and the incubation period is 15.2 days. Finally, the productive number was estimated as R0 = 7.6. Conclusions: With only the cumulative number of cases and the total number of active cases of COVID19, several important SEIR model parameters can be measured effectively. This approach can be applied for any infectious disease epidemic anywhere in the world.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1