Author: Li, Dingxin
Title: Human Skeleton Detection and Extraction in Dance Video Based on PSO-Enabled LSTM Neural Network Cord-id: acyoag37 Document date: 2021_9_11
ID: acyoag37
Snippet: With the significant increase of social informatization, the emerging information technology represented by machine vision has been applied to more and more scenes. Among them, the detection and extraction of human skeleton in a dance video based on this technology has a huge market demand in education and training. However, the existing detection and extraction technology has the problems of slow recognition speed and low extraction accuracy. Therefore, this paper proposes a neural network base
Document: With the significant increase of social informatization, the emerging information technology represented by machine vision has been applied to more and more scenes. Among them, the detection and extraction of human skeleton in a dance video based on this technology has a huge market demand in education and training. However, the existing detection and extraction technology has the problems of slow recognition speed and low extraction accuracy. Therefore, this paper proposes a neural network based on particle swarm optimization to detect and extract human skeletons in a dance video. Through the research and test on different data sets, it is found that the neural network based on particle swarm optimization algorithm has good detection and extraction ability and has high accuracy for the detection and recognition of human skeleton points. Among them, on all MPII data sets, the average accuracy of PSO-LSTM proposed in this paper is 3.9% higher than that of other optimal algorithms; on the PoseTrack data set, the average accuracy of detection and extraction is improved by 2.3%. The above results show that the neural network based on particle swarm optimization has fast detection speed and good extraction accuracy and can be used for the detection and extraction of human skeleton in a dance video.
Search related documents:
Co phrase search for related documents- low extraction and machine learning: 1
- lr learning rate and lstm long short term memory: 1
- lr learning rate and lstm model: 1
- lr learning rate and machine learning: 1
- lstm long short term memory and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46
- lstm model and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
- lstm network and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24
- lstm network compare and machine learning: 1
- lstm neural network and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- lstm performance and machine learning: 1, 2, 3, 4, 5, 6
Co phrase search for related documents, hyperlinks ordered by date