Author: Habibi, Jafar; Fazelinia, Amir; Annamoradnejad, Issa
                    Title: Using Experts' Opinions in Machine Learning Tasks  Cord-id: hqpbadsz  Document date: 2020_8_10
                    ID: hqpbadsz
                    
                    Snippet: In machine learning tasks, especially in the tasks of prediction, scientists tend to rely solely on available historical data and disregard unproven insights, such as experts' opinions, polls, and betting odds. In this paper, we propose a general three-step framework for utilizing experts' insights in machine learning tasks and build four concrete models for a sports game prediction case study. For the case study, we have chosen the task of predicting NCAA Men's Basketball games, which has been 
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: In machine learning tasks, especially in the tasks of prediction, scientists tend to rely solely on available historical data and disregard unproven insights, such as experts' opinions, polls, and betting odds. In this paper, we propose a general three-step framework for utilizing experts' insights in machine learning tasks and build four concrete models for a sports game prediction case study. For the case study, we have chosen the task of predicting NCAA Men's Basketball games, which has been the focus of a group of Kaggle competitions in recent years. Results highly suggest that the good performance and high scores of the past models are a result of chance, and not because of a good-performing and stable model. Furthermore, our proposed models can achieve more steady results with lower log loss average (best at 0.489) compared to the top solutions of the 2019 competition (>0.503), and reach the top 1%, 10% and 1% in the 2017, 2018 and 2019 leaderboards, respectively.
 
  Search related documents: 
                                Co phrase  search for related documents- accuracy achieve and machine learn: 1
- accuracy achieve and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36
- accuracy achieve and machine learning field: 1
- accuracy achieve and machine learning ml task: 1
- accuracy achieve and machine learning model: 1, 2, 3, 4
- accuracy achieve and machine learning task: 1
 
                                Co phrase  search for related documents, hyperlinks ordered by date