Author: Yang, Jun-Li; Ha, Thi-Kim-Quy; Dhodary, Basanta; Pyo, Euisun; Nguyen, Ngoc Hieu; Cho, Hyomoon; Kim, Eunhee; Oh, Won Keun
                    Title: Oleanane triterpenes from the flowers of Camellia japonica inhibit porcine epidemic diarrhea virus (PEDV) replication.  Cord-id: ckigw1z9  Document date: 2015_1_1
                    ID: ckigw1z9
                    
                    Snippet: Porcine epidemic diarrhea virus (PEDV) infections have resulted in a severe economic loss in the swine industry in many countries due to no effective treatment approach. Fifteen oleanane triterpenes (1-15), including nine new ones (1-4 and 10-14), were isolated from the flowers of Camellia japonica, and their molecular structures were determined by extensive spectroscopic methods. These compounds were evaluated for their antiviral activity against PEDV replication, and the structure-activity rel
                    
                    
                    
                     
                    
                    
                    
                    
                        
                            
                                Document: Porcine epidemic diarrhea virus (PEDV) infections have resulted in a severe economic loss in the swine industry in many countries due to no effective treatment approach. Fifteen oleanane triterpenes (1-15), including nine new ones (1-4 and 10-14), were isolated from the flowers of Camellia japonica, and their molecular structures were determined by extensive spectroscopic methods. These compounds were evaluated for their antiviral activity against PEDV replication, and the structure-activity relationships (SARs) were discussed. Compounds 6, 9, 11, and 13 showed most potent inhibitory effects on PEDV replication. They were found to inhibit PEDV genes encoding GP6 nucleocapsid, GP2 spike, and GP5 membrane protein synthesis based on RT-PCR data. Western blot analysis also demonstrated their inhibitory effects on PEDV GP6 nucleocapsid and GP2 spike protein synthesis during viral replication. The present study suggested the potential of compounds 6, 9, 11, and 13 as promising scaffolds for treating PEDV infection via inhibiting viral replication.
 
  Search related documents: 
                                Co phrase  search for related documents- Try single phrases listed below for: 1
  
 
                                Co phrase  search for related documents, hyperlinks ordered by date