Author: Hao, Wei; Ma, Bo; Li, Ziheng; Wang, Xiaoyu; Gao, Xiaopan; Li, Yaohao; Qin, Bo; Shang, Shiying; Cui, Sheng; Tan, Zhongping
Title: Binding of the SARS-CoV-2 Spike Protein to Glycans Cord-id: ckz1cfqx Document date: 2021_1_19
ID: ckz1cfqx
Snippet: The pandemic of SARS-CoV-2 has caused a high number of deaths in the world. To combat it, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate (HS) and sialic acid-containing glycolipids/glycoproteins. In this study, we examined and compared the binding of the subunits and spike (S) proteins of SARS-CoV-2 and SARS-CoV, MERS-CoV to these glycans. Our results re
Document: The pandemic of SARS-CoV-2 has caused a high number of deaths in the world. To combat it, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate (HS) and sialic acid-containing glycolipids/glycoproteins. In this study, we examined and compared the binding of the subunits and spike (S) proteins of SARS-CoV-2 and SARS-CoV, MERS-CoV to these glycans. Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected. Overall, this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells, and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.
Search related documents:
Co phrase search for related documents- accessory protein and acute respiratory disease: 1, 2, 3, 4, 5, 6
- acid residue and acute respiratory disease: 1, 2
- acid residue and low binding affinity: 1
- acute respiratory disease and lmwh heparin: 1, 2, 3, 4
- acute respiratory disease and lmwh treatment: 1, 2
- acute respiratory disease and low binding affinity: 1
- acute respiratory disease and low molecular: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute respiratory disease and low molecular weight: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
- acute respiratory disease and low molecular weight lmwh heparin: 1, 2, 3, 4
- lmwh heparin and long heparin: 1
- lmwh heparin and low molecular: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lmwh heparin and low molecular weight: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lmwh heparin and low molecular weight lmwh heparin: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lmwh treatment and low molecular: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lmwh treatment and low molecular weight: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- lmwh treatment and low molecular weight lmwh heparin: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long heparin and low molecular: 1, 2
- long heparin and low molecular weight: 1, 2
- long heparin and low molecular weight lmwh heparin: 1
Co phrase search for related documents, hyperlinks ordered by date