Author: Rajpal, Sheetal; Lakhyani, Navin; Singh, Ayush Kumar; Kohli, Rishav; Kumar, Naveen
Title: Using Handpicked Features in Conjunction with ResNet-50 for Improved Detection of COVID-19 from Chest X-Ray Images Cord-id: ld2vzl9d Document date: 2021_2_10
ID: ld2vzl9d
Snippet: Coronaviruses are a family of viruses that majorly cause respiratory disorders in humans. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus that causes the coronavirus disease 2019 (COVID-19). WHO has identified COVID-19 as a pandemic as it has spread across the globe due to its highly contagious nature. For early diagnosis of COVID-19, the reverse transcription-polymerase chain reaction (RT-PCR) test is commonly done. However, it suffers from a high fal
Document: Coronaviruses are a family of viruses that majorly cause respiratory disorders in humans. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus that causes the coronavirus disease 2019 (COVID-19). WHO has identified COVID-19 as a pandemic as it has spread across the globe due to its highly contagious nature. For early diagnosis of COVID-19, the reverse transcription-polymerase chain reaction (RT-PCR) test is commonly done. However, it suffers from a high false-negative rate of up to 67% if the test is done during the first five days of exposure. As an alternative, research on the efficacy of deep learning techniques employed in the identification of COVID-19 disease using chest X-ray images is intensely pursued. As pneumonia and COVID-19 exhibit similar/ overlapping symptoms and affect the human lungs, a distinction between the chest X-ray images of pneumonia patients and COVID-19 patients becomes challenging. In this work, we have modeled the COVID-19 classification problem as a multiclass classification problem involving three classes, namely COVID-19, pneumonia, and normal. We have proposed a novel classification framework which combines a set of handpicked features with those obtained from a deep convolutional neural network. The proposed framework comprises of three modules. In the first module, we exploit the strength of transfer learning using ResNet-50 for training the network on a set of preprocessed images and obtain a vector of 2048 features. In the second module, we construct a pool of frequency and texture based 252 handpicked features that are further reduced to a set of 64 features using PCA. Subsequently, these are passed to a feed forward neural network to obtain a set of 16 features. The third module concatenates the features obtained from first and second modules, and passes them to a dense layer followed by the softmax layer to yield the desired classification model. We have used chest X-ray images of COVID-19 patients from four independent publicly available repositories, in addition to images from the Mendeley and Kaggle Chest X-Ray Datasets for pneumonia and normal cases. To establish the efficacy of the proposed model, 10-fold cross-validation is carried out. The model generated an overall classification accuracy of 0.974 [Formula: see text] 0.02 and a sensitivity of 0.987 [Formula: see text] 0.05, 0.963 [Formula: see text] 0.05, and 0.973 [Formula: see text] 0.04 at 95% confidence interval for COVID-19, normal, and pneumonia classes, respectively. To ensure the effectiveness of the proposed model, it was validated using an independent Chest X-ray cohort and an overall classification accuracy of 0.979 was achieved. Comparison of the proposed framework with state-of-the-art methods reveal that the proposed framework outperforms others in terms of accuracy and sensitivity. Since interpretability of results is crucial in the medical domain, the gradient-based localizations are captured using Gradient-weighted Class Activation Mapping (Grad-CAM). In summary, the results obtained are stable over independent cohorts and interpretable using Grad-CAM localizations that serve as clinical evidence.
Search related documents:
Co phrase search for related documents- accuracy achieve and long short term memory: 1, 2, 3, 4, 5, 6
- accuracy achieve and low sensitivity: 1, 2, 3
- accuracy achieve and lstm short term memory: 1, 2, 3
- accuracy achieve and lung region: 1
- accuracy attain and activation mapping: 1
- accuracy obtain and long lstm short term memory: 1
- accuracy obtain and long short term memory: 1
- accuracy obtain and low sensitivity: 1
- accuracy obtain and lstm short term memory: 1
- activation mapping and long short term memory: 1
- activation mapping and low sensitivity: 1
- additional bilstm and long short term memory: 1
- long lstm short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- long short term memory and lstm short term memory: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- low sensitivity and lung region: 1, 2
Co phrase search for related documents, hyperlinks ordered by date