Author: Li, Chun; Yang, Yunyun; Liang, Hui; Wu, Boying
Title: Transfer learning for establishment of recognition of COVID-19 on CT imaging using small-sized training datasets [Image: see text] Cord-id: cnd4dhkc Document date: 2021_2_6
ID: cnd4dhkc
Snippet: The coronavirus disease, called COVID-19, which is spreading fast worldwide since the end of 2019, and has become a global challenging pandemic. Until 27th May 2020, it caused more than 5.6 million individuals infected throughout the world and resulted in greater than 348,145 deaths. CT images-based classification technique has been tried to use the identification of COVID-19 with CT imaging by hospitals, which aims to minimize the possibility of virus transmission and alleviate the burden of cl
Document: The coronavirus disease, called COVID-19, which is spreading fast worldwide since the end of 2019, and has become a global challenging pandemic. Until 27th May 2020, it caused more than 5.6 million individuals infected throughout the world and resulted in greater than 348,145 deaths. CT images-based classification technique has been tried to use the identification of COVID-19 with CT imaging by hospitals, which aims to minimize the possibility of virus transmission and alleviate the burden of clinicians and radiologists. Early diagnosis of COVID-19, which not only prevents the disease from spreading further but allows more reasonable allocation of limited medical resources. Therefore, CT images play an essential role in identifying cases of COVID-19 that are in great need of intensive clinical care. Unfortunately, the current public health emergency, which has caused great difficulties in collecting a large set of precise data for training neural networks. To tackle this challenge, our first thought is transfer learning, which is a technique that aims to transfer the knowledge from one or more source tasks to a target task when the latter has fewer training data. Since the training data is relatively limited, so a transfer learning-based DensNet-121 approach for the identification of COVID-19 is established. The proposed method is inspired by the precious work of predecessors such as CheXNet for identifying common Pneumonia, which was trained using the large Chest X-ray14 dataset, and the dataset contains 112,120 frontal chest X-rays of 14 different chest diseases (including Pneumonia) that are individually labeled and achieved good performance. Therefore, CheXNet as the pre-trained network was used for the target task (COVID-19 classification) by fine-tuning the network weights on the small-sized dataset in the target task. Finally, we evaluated our proposed method on the COVID-19-CT dataset. Experimentally, our method achieves state-of-the-art performance for the accuracy (ACC) and F1-score. The quantitative indicators show that the proposed method only uses a GPU can reach the best performance, up to 0.87 and 0.86, respectively, compared with some widely used and recent deep learning methods, which are helpful for COVID-19 diagnosis and patient triage. The codes used in this manuscript are publicly available on GitHub at (https://github.com/lichun0503/CT-Classification).
Search related documents:
Co phrase search for related documents- absence presence and lung segmentation: 1, 2
- activation function and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- loss function and lung segmentation: 1, 2, 3, 4, 5, 6
- loss function training and lung segmentation: 1
Co phrase search for related documents, hyperlinks ordered by date