Author: Valier, Agostino
Title: The Cross Validation in Automated Valuation Models: A Proposal for Use Cord-id: ib7jjbfw Document date: 2020_8_26
ID: ib7jjbfw
Snippet: The appraisal of large amounts of properties is often entrusted to Automated Valuation Models (AVM). At one time, only econometric models were used for this purpose. More recently, also machine learning models are used in mass appraisal techniques. The literature has devoted much attention to assessing the performance capabilities of these models. Verification tests first train a model on a training set, then measure the prediction error of the model on a set of data not met before: the testing
Document: The appraisal of large amounts of properties is often entrusted to Automated Valuation Models (AVM). At one time, only econometric models were used for this purpose. More recently, also machine learning models are used in mass appraisal techniques. The literature has devoted much attention to assessing the performance capabilities of these models. Verification tests first train a model on a training set, then measure the prediction error of the model on a set of data not met before: the testing set. The prediction error is measured with an accuracy indicator. However, verification on the testing set alone may be insufficient to describe the model’s performance. In addition, it may not detect the existence of model bias such as overfitting. This research proposes the use of cross validation to provide a more complete and effective evaluation of models. Ten-fold cross validation is used within 5 models (linear regression, regression tree, random forest, nearest neighbors, multilayer perception) in the assessment of 1,400 properties in the city of Turin. The results obtained during validation provide additional information for the evaluation of the models. This information cannot be provided by the accuracy measurement when considered alone.
Search related documents:
Co phrase search for related documents- accuracy measurement and additional information: 1
- accuracy measurement and machine learning: 1, 2
- accuracy output and machine learning: 1, 2
- accuracy parameter and machine learning: 1, 2
- accuracy result and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- accuracy test and additional information: 1
- accuracy test and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
Co phrase search for related documents, hyperlinks ordered by date