Author: Kunt, M. Akif Gunes Haluk
Title: An experimental study on design and performance of a waste heat recovery system with a thermoelectric generator to be used in exhaust systems of motorcycle engines Cord-id: cydz6unt Document date: 2021_1_1
ID: cydz6unt
Snippet: Worldwide, motorcycle sales have increased significantly during the coronavirus disease 2019 pandemic process. Thermoelectric generators are technologies that can directly convert waste heat into electrical energy in internal combustion engines. In this study, a waste heat recovery system with a thermoelectric generator has been designed for the exhaust system of a motorcycle engine with a cylinder volume of 50?cc. The performance of the waste heat recovery system has been examined under throttl
Document: Worldwide, motorcycle sales have increased significantly during the coronavirus disease 2019 pandemic process. Thermoelectric generators are technologies that can directly convert waste heat into electrical energy in internal combustion engines. In this study, a waste heat recovery system with a thermoelectric generator has been designed for the exhaust system of a motorcycle engine with a cylinder volume of 50?cc. The performance of the waste heat recovery system has been examined under throttle opening of three-fourth and at different speeds, and a thermal model of the system has been created by means of the GT SUITE model. According to the test results, the increase in engine speed caused different temperature differences on the surfaces of the TEG module due to the constant flow of the fan the maximum recovery power has been found as 2.05?W at an engine speed of 6000 r/min and the maximum system efficiency has been found as 2.41% at an engine speed of 4000 r/min. Following minimum temperature differences have been calculated between experimental and GT SUITE thermal model calculations: 14.05 K at an engine speed of 4000 r/min and at Texh temperatures;14.1 K at an engine speed of 6000 r/min and at Th temperatures;and 7.5 K at an engine speed of 5500 r/mi and at Tc temperatures.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date