Selected article for: "host pathogen and past decade"

Author: Gysi, Deisy Morselli; Do Valle, Ítalo; Zitnik, Marinka; Ameli, Asher; Gan, Xiao; Varol, Onur; Sanchez, Helia; Baron, Rebecca Marlene; Ghiassian, Dina; Loscalzo, Joseph; Barabási, Albert-László
Title: Network Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19
  • Cord-id: iklve38z
  • Document date: 2020_4_15
  • ID: iklve38z
    Snippet: The COVID-19 pandemic demands the rapid identification of drug-repurpusing candidates. In the past decade, network medicine had developed a framework consisting of a series of quantitative approaches and predictive tools to study host-pathogen interactions, unveil the molecular mechanisms of the infection, identify comorbidities as well as rapidly detect drug repurpusing candidates. Here, we adapt the network-based toolset to COVID-19, recovering the primary pulmonary manifestations of the virus
    Document: The COVID-19 pandemic demands the rapid identification of drug-repurpusing candidates. In the past decade, network medicine had developed a framework consisting of a series of quantitative approaches and predictive tools to study host-pathogen interactions, unveil the molecular mechanisms of the infection, identify comorbidities as well as rapidly detect drug repurpusing candidates. Here, we adapt the network-based toolset to COVID-19, recovering the primary pulmonary manifestations of the virus in the lung as well as observed comorbidities associated with cardiovascular diseases. We predict that the virus can manifest itself in other tissues, such as the reproductive system, and brain regions, moreover we predict neurological comorbidities. We build on these findings to deploy three network-based drug repurposing strategies, relying on network proximity, diffusion, and AI-based metrics, allowing to rank all approved drugs based on their likely efficacy for COVID-19 patients, aggregate all predictions, and, thereby to arrive at 81 promising repurposing candidates. We validate the accuracy of our predictions using drugs currently in clinical trials, and an expression-based validation of selected candidates suggests that these drugs, with known toxicities and side effects, could be moved to clinical trials rapidly.

    Search related documents:
    Co phrase search for related documents
    • account uncertainty and activation function: 1
    • account uncertainty and machine learning: 1, 2, 3, 4
    • activation function and additional information: 1
    • activation function and loss function: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
    • activation function and lung tissue: 1, 2, 3
    • activation function and machine learning: 1, 2, 3, 4, 5, 6
    • additional information and low dimensional: 1, 2
    • additional information and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
    • additional interaction and machine learning: 1
    • local neighborhood and low dimensional: 1, 2, 3
    • local neighborhood and machine learning: 1
    • loss function and low dimensional: 1
    • loss function and lung tissue: 1, 2, 3, 4, 5, 6, 7, 8, 9
    • loss function and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23
    • low dimensional and machine learning: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
    • lung tissue and machine learning: 1, 2, 3, 4, 5, 6