Author: Bassett, Jennifer D; Swift, Stephanie L; Bramson, Jonathan L
Title: Optimizing vaccine-induced CD8(+) T-cell immunity: focus on recombinant adenovirus vectors. Cord-id: d07vdad6 Document date: 2011_1_1
ID: d07vdad6
Snippet: Recombinant adenoviruses have emerged as promising viral vectors for CD8(+) T-cell vaccines. Our studies have indicated that unlike most acute infections, the CD8(+) T-cell memory population elicited by recombinant human adenovirus serotype 5 (rHuAd5) displays a dominant effector memory phenotype. Persistent, low-level transgene expression from the rHuAd5 vector sustains the CD8(+) T-cell memory population and a nonhematopoietic cell compartment appears to be involved in long-term presentation o
Document: Recombinant adenoviruses have emerged as promising viral vectors for CD8(+) T-cell vaccines. Our studies have indicated that unlike most acute infections, the CD8(+) T-cell memory population elicited by recombinant human adenovirus serotype 5 (rHuAd5) displays a dominant effector memory phenotype. Persistent, low-level transgene expression from the rHuAd5 vector sustains the CD8(+) T-cell memory population and a nonhematopoietic cell compartment appears to be involved in long-term presentation of adenoviral antigens. Although we are beginning to learn more about the factors that control the maintenance and functionality of memory CD8(+) T cells, we do not yet fully understand what comprises a protective CD8(+) T-cell response. Results from upcoming Phase II clinical trials will be important for determining whether rHuAd5 T-cell vaccines are effective in humans and should help identify correlates of CD8(+) T-cell protection.
Search related documents:
Co phrase search for related documents, hyperlinks ordered by date