Author: Deguchi, Sayaka; Serrano-Aroca, Ãngel; Tambuwala, Murtaza M; Uhal, Bruce D; Brufsky, Adam M; Takayama, Kazuo
Title: SARS-CoV-2 research using human pluripotent stem cells and organoids. Cord-id: q08y3lxh Document date: 2021_7_24
ID: q08y3lxh
Snippet: Experimental cell models are indispensable for clarifying the pathophysiology of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and for developing therapeutic agents. To recapitulate the symptoms and drug response of COVID-19 patients in vitro, SARS-CoV-2 studies using physiologically relevant human embryonic stem (ES)/induced pluripotent stem (iPS) cell-derived somatic cells and organoids are ongoing. These cells a
Document: Experimental cell models are indispensable for clarifying the pathophysiology of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and for developing therapeutic agents. To recapitulate the symptoms and drug response of COVID-19 patients in vitro, SARS-CoV-2 studies using physiologically relevant human embryonic stem (ES)/induced pluripotent stem (iPS) cell-derived somatic cells and organoids are ongoing. These cells and organoids have been used to show that SARS-CoV-2 can infect and damage various organs including the lung, heart, brain, intestinal tract, kidney, and pancreas. They are also being used to develop COVID-19 therapeutic agents, including evaluation of their antiviral efficacy and safety. The relationship between COVID-19 aggravation and human genetic backgrounds has been investigated using genetically modified ES/iPS cells and patient-derived iPS cells. This review summarizes the latest results and issues of SARS-CoV-2 research using human ES/iPS cell-derived somatic cells and organoids.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date