Author: Müller, Fabian; Zainuddin, Shakir; Scheibel, Thomas
Title: Roll-to-Roll Production of Spider Silk Nanofiber Nonwoven Meshes Using Centrifugal Electrospinning for Filtration Applications Cord-id: cyybby9x Document date: 2020_11_26
ID: cyybby9x
Snippet: Filtration systems used in technical and medical applications require components for fine particle deep filtration to be highly efficient and at the same time air permeable. In high efficiency filters, nonwoven meshes, which show increased performance based on small fiber diameters (e.g., using nanofibers), can be used as fine particle filter layers. Nanofiber nonwoven meshes made by electrospinning of spider silk proteins have been recently shown to exhibit required filter properties. Needle-ba
Document: Filtration systems used in technical and medical applications require components for fine particle deep filtration to be highly efficient and at the same time air permeable. In high efficiency filters, nonwoven meshes, which show increased performance based on small fiber diameters (e.g., using nanofibers), can be used as fine particle filter layers. Nanofiber nonwoven meshes made by electrospinning of spider silk proteins have been recently shown to exhibit required filter properties. Needle-based electrospinning, however, is limited regarding its productivity and scalability. Centrifugal electrospinning, in contrast, has been shown to allow manufacturing of ultrathin polymer nonwoven meshes in an efficient and scalable manner. Here, continuous roll-to-roll production of nonwoven meshes made of recombinant spider silk proteins is established using centrifugal electrospinning. The produced spider silk nanofiber meshes show high filter efficiency in the case of fine particulate matter below 2.5 µm (PM2.5) and a low pressure drop, resulting in excellent filter quality.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date