Selected article for: "feature selection and final model"

Author: Sîrbu, Alina; Barbieri, Greta; Faita, Francesco; Ferragina, Paolo; Gargani, Luna; Ghiadoni, Lorenzo; Priami, Corrado
Title: Early outcome detection for COVID-19 patients
  • Cord-id: dh2um8kk
  • Document date: 2021_9_16
  • ID: dh2um8kk
    Snippet: With the outbreak of COVID-19 exerting a strong pressure on hospitals and health facilities, clinical decision support systems based on predictive models can help to effectively improve the management of the pandemic. We present a method for predicting mortality for COVID-19 patients. Starting from a large number of clinical variables, we select six of them with largest predictive power, using a feature selection method based on genetic algorithms and starting from a set of COVID-19 patients fro
    Document: With the outbreak of COVID-19 exerting a strong pressure on hospitals and health facilities, clinical decision support systems based on predictive models can help to effectively improve the management of the pandemic. We present a method for predicting mortality for COVID-19 patients. Starting from a large number of clinical variables, we select six of them with largest predictive power, using a feature selection method based on genetic algorithms and starting from a set of COVID-19 patients from the first wave. The algorithm is designed to reduce the impact of missing values in the set of variables measured, and consider only variables that show good accuracy on validation data. The final predictive model provides accuracy larger than 85% on test data, including a new patient cohort from the second COVID-19 wave, and on patients with imputed missing values. The selected clinical variables are confirmed to be relevant by recent literature on COVID-19.

    Search related documents:
    Co phrase search for related documents
    • accuracy auc and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • accuracy auc and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
    • accuracy auc and low impact: 1
    • ad logistic and logistic regression: 1
    • ad logistic regression and logistic regression: 1, 2
    • admission confusion and logistic regression: 1
    • admission confusion and logistic regression model: 1
    • liver disease and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
    • liver disease and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
    • liver disease and low impact: 1, 2, 3
    • logistic regression and low impact: 1, 2, 3, 4, 5, 6, 7, 8
    • logistic regression model and low impact: 1