Selected article for: "contamination risk and key factor"

Author: Giovanni, Antoine; Radulesco, Thomas; Bouchet, Gilles; Mattei, Alexia; Révis, Joana; Bogdanski, Estelle; Michel, Justin
Title: Transmission of droplet-conveyed infectious agents such as SARS-CoV-2 by speech and vocal exercises during speech therapy: preliminary experiment concerning airflow velocity
  • Cord-id: qrz8zb7b
  • Document date: 2020_7_16
  • ID: qrz8zb7b
    Snippet: PURPOSE: Infectious agents, such as SARS-CoV-2, can be carried by droplets expelled during breathing. The spatial dissemination of droplets varies according to their initial velocity. After a short literature review, our goal was to determine the velocity of the exhaled air during vocal exercises. METHODS: A propylene glycol cloud produced by 2 e-cigarettes’ users allowed visualization of the exhaled air emitted during vocal exercises. Airflow velocities were measured during the first 200 ms o
    Document: PURPOSE: Infectious agents, such as SARS-CoV-2, can be carried by droplets expelled during breathing. The spatial dissemination of droplets varies according to their initial velocity. After a short literature review, our goal was to determine the velocity of the exhaled air during vocal exercises. METHODS: A propylene glycol cloud produced by 2 e-cigarettes’ users allowed visualization of the exhaled air emitted during vocal exercises. Airflow velocities were measured during the first 200 ms of a long exhalation, a sustained vowel /a/ and varied vocal exercises. For the long exhalation and the sustained vowel /a/, the decrease of airflow velocity was measured until 3 s. Results were compared with a Computational Fluid Dynamics (CFD) study using boundary conditions consistent with our experimental study. RESULTS: Regarding the production of vowels, higher velocities were found in loud and whispered voices than in normal voice. Voiced consonants like /ʒ/ or /v/ generated higher velocities than vowels. Some voiceless consonants, e.g., /t/ generated high velocities, but long exhalation had the highest velocities. Semi-occluded vocal tract exercises generated faster airflow velocities than loud speech, with a decreased velocity during voicing. The initial velocity quickly decreased as was shown during a long exhalation or a sustained vowel /a/. Velocities were consistent with the CFD data. CONCLUSION: Initial velocity of the exhaled air is a key factor influencing droplets trajectory. Our study revealed that vocal exercises produce a slower airflow than long exhalation. Speech therapy should, therefore, not be associated with an increased risk of contamination when implementing standard recommendations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00405-020-06200-7) contains supplementary material, which is available to authorized users.

    Search related documents:
    Co phrase search for related documents
    • Try single phrases listed below for: 1