Author: Lu, Patrick Y.; Xie, Frank; Woodle, Martin C.
Title: In Vivo Application of RNA Interference: From Functional Genomics to Therapeutics Cord-id: 9h2z5d5y Document date: 2005_8_9
ID: 9h2z5d5y
Snippet: RNAi has rapidly become a powerful tool for drug target discovery and validation in cell culture, and now has largely displaced efforts with antisense and ribozymes. Consequently, interest is rapidly growing for extension of its application to in vivo systems, such as animal disease models and human therapeutics. Studies on RNAi have resulted in two basic methods for its use for gene selective inhibition: 1) cytoplasmic delivery of short dsRNA oligonucleotides (siRNA), which mimics an active int
Document: RNAi has rapidly become a powerful tool for drug target discovery and validation in cell culture, and now has largely displaced efforts with antisense and ribozymes. Consequently, interest is rapidly growing for extension of its application to in vivo systems, such as animal disease models and human therapeutics. Studies on RNAi have resulted in two basic methods for its use for gene selective inhibition: 1) cytoplasmic delivery of short dsRNA oligonucleotides (siRNA), which mimics an active intermediate of an endogenous RNAi mechanism and 2) nuclear delivery of gene expression cassettes that express a short hairpin RNA (shRNA), which mimics the micro interfering RNA (miRNA) active intermediate of a different endogenous RNAi mechanism. Nonâ€viral gene delivery systems are a diverse collection of technologies that are applicable to both of these forms of RNAi. Importantly, unlike antisense and ribozyme systems, a remarkable trait of siRNA is a lack of dependence on chemical modifications blocking enzymatic degradation, although chemical protection methods developed for the earlier systems are being incorporated into siRNA and are generally compatible with nonâ€viral delivery systems. The use of siRNA is emerging more rapidly than for shRNA, in part due to the increased effort required to construct shRNA expression systems before selection of active sequences and verification of biological activity are obtained. In contrast, screens of many siRNA sequences can be accomplished rapidly using synthetic oligos. It is not surprising that the use of siRNA in vivo is also emerging first. Initial in vivo studies have been reported for both viral and nonâ€viral delivery but viral delivery is limited to shRNA. This review describes the emerging in vivo application of nonâ€viral delivery systems for RNAi for functional genomics, which will provide a foundation for further development of RNAi therapeutics. Of interest is the rapid adaptation of ligandâ€targeted plasmidâ€based nanoparticles for RNAi agents. These systems are growing in capabilities and beginning to pose a serious rival to viral vector based gene delivery. The activity of siRNA in the cytoplasm may lower the hurdle and thereby accelerate the successful development of therapeutics based on targeted nonâ€viral delivery systems.
Search related documents:
Co phrase search for related documents- Try single phrases listed below for: 1
Co phrase search for related documents, hyperlinks ordered by date