Author: Velasco-RodrÃguez, Diego; Alonso-Dominguez, Juan-Manuel; Vidal Laso, Rosa; Lainez-González, Daniel; GarcÃa-Raso, Aránzazu; MartÃn-Herrero, Sara; Herrero, Antonio; MartÃnez Alfonzo, Inés; Serrano-López, Juana; Jiménez-Barral, Elena; Nistal, Sara; Pérez Márquez, Manuel; Askari, Elham; Castillo Ãlvarez, Jorge; Núñez, Antonio; Jiménez RodrÃguez, Ãngel; Heili-Frades, Sarah; Pérez-Calvo, César; Górgolas, Miguel; Barba, Raquel; Llamas-Sillero, Pilar
Title: Development and validation of a predictive model of in-hospital mortality in COVID-19 patients Cord-id: bvcx3l52 Document date: 2021_3_4
ID: bvcx3l52
Snippet: We retrospectively evaluated 2879 hospitalized COVID-19 patients from four hospitals to evaluate the ability of demographic data, medical history, and on-admission laboratory parameters to predict in-hospital mortality. Association of previously published risk factors (age, gender, arterial hypertension, diabetes mellitus, smoking habit, obesity, renal failure, cardiovascular/ pulmonary diseases, serum ferritin, lymphocyte count, APTT, PT, fibrinogen, D-dimer, and platelet count) with death was
Document: We retrospectively evaluated 2879 hospitalized COVID-19 patients from four hospitals to evaluate the ability of demographic data, medical history, and on-admission laboratory parameters to predict in-hospital mortality. Association of previously published risk factors (age, gender, arterial hypertension, diabetes mellitus, smoking habit, obesity, renal failure, cardiovascular/ pulmonary diseases, serum ferritin, lymphocyte count, APTT, PT, fibrinogen, D-dimer, and platelet count) with death was tested by a multivariate logistic regression, and a predictive model was created, with further validation in an independent sample. A total of 2070 hospitalized COVID-19 patients were finally included in the multivariable analysis. Age 61–70 years (p<0.001; OR: 7.69; 95%CI: 2.93 to 20.14), age 71–80 years (p<0.001; OR: 14.99; 95%CI: 5.88 to 38.22), age >80 years (p<0.001; OR: 36.78; 95%CI: 14.42 to 93.85), male gender (p<0.001; OR: 1.84; 95%CI: 1.31 to 2.58), D-dimer levels >2 ULN (p = 0.003; OR: 1.79; 95%CI: 1.22 to 2.62), and prolonged PT (p<0.001; OR: 2.18; 95%CI: 1.49 to 3.18) were independently associated with increased in-hospital mortality. A predictive model performed with these parameters showed an AUC of 0.81 in the development cohort (n = 1270) [sensitivity of 95.83%, specificity of 41.46%, negative predictive value of 98.01%, and positive predictive value of 24.85%]. These results were then validated in an independent data sample (n = 800). Our predictive model of in-hospital mortality of COVID-19 patients has been developed, calibrated and validated. The model (MRS-COVID) included age, male gender, and on-admission coagulopathy markers as positively correlated factors with fatal outcome.
Search related documents:
Co phrase search for related documents- acute ards respiratory distress syndrome and admission risk: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- acute ards respiratory distress syndrome and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13
- acute care hospital and admission risk: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
- acute care hospital and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
- acute care hospital and logistic regression model: 1, 2, 3, 4
- admission gender and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
- admission gender and logistic regression model: 1, 2
- admission laboratory parameter and logistic regression: 1
- admission risk and logistic regression: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- admission risk and logistic regression model: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- admission risk and low admission risk: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25
- admission risk and low admission risk classify: 1
- logistic regression and low admission risk: 1, 2, 3, 4
- logistic regression and low admission risk classify: 1
- logistic regression model and low admission risk: 1
Co phrase search for related documents, hyperlinks ordered by date